-
-
Notifications
You must be signed in to change notification settings - Fork 3.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Intermittent test failure on systems::test::correct_transforms_when_no_children
in bevy_transform
#6081
Comments
I think this is the same issue as #6036. |
Interesting. I've never had a failure in the did_propagate test, always in this one. But the commonality of the assert, |
it's an issue with the panicking test. When the test panics it causes other test's systems not to run if they're on the thread that panics. |
i think this may also affect |
closing for #5285 |
# Objective Right now, the `TaskPool` implementation allows panics to permanently kill worker threads upon panicking. This is currently non-recoverable without using a `std::panic::catch_unwind` in every scheduled task. This is poor ergonomics and even poorer developer experience. This is exacerbated by #2250 as these threads are global and cannot be replaced after initialization. Removes the need for temporary fixes like #4998. Fixes #4996. Fixes #6081. Fixes #5285. Fixes #5054. Supersedes #2307. ## Solution The current solution is to wrap `Executor::run` in `TaskPool` with a `catch_unwind`, and discarding the potential panic. This was taken straight from [smol](/~https://github.com/smol-rs/smol/blob/404c7bcc0aea59b82d7347058043b8de7133241c/src/spawn.rs#L44)'s current implementation. ~~However, this is not entirely ideal as:~~ - ~~the signaled to the awaiting task. We would need to change `Task<T>` to use `async_task::FallibleTask` internally, and even then it doesn't signal *why* it panicked, just that it did.~~ (See below). - ~~no error is logged of any kind~~ (See below) - ~~it's unclear if it drops other tasks in the executor~~ (it does not) - ~~This allows the ECS parallel executor to keep chugging even though a system's task has been dropped. This inevitably leads to deadlock in the executor.~~ Assuming we don't catch the unwind in ParallelExecutor, this will naturally kill the main thread. ### Alternatives A final solution likely will incorporate elements of any or all of the following. #### ~~Log and Ignore~~ ~~Log the panic, drop the task, keep chugging. This only addresses the discoverability of the panic. The process will continue to run, probably deadlocking the executor. tokio's detatched tasks operate in this fashion.~~ Panics already do this by default, even when caught by `catch_unwind`. #### ~~`catch_unwind` in `ParallelExecutor`~~ ~~Add another layer catching system-level panics into the `ParallelExecutor`. How the executor continues when a core dependency of many systems fails to run is up for debate.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### ~~Emulate/Copy `tokio::JoinHandle` with `Task<T>`~~ ~~`tokio::JoinHandle<T>` bubbles up the panic from the underlying task when awaited. This can be transitively applied across other APIs that also use `Task<T>` like `Query::par_for_each` and `TaskPool::scope`, bubbling up the panic until it's either caught or it reaches the main thread.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### Abort on Panic The nuclear option. Log the error, abort the entire process on any thread in the task pool panicking. Definitely avoids any additional infrastructure for passing the panic around, and might actually lead to more efficient code as any unwinding is optimized out. However gives the developer zero options for dealing with the issue, a seemingly poor choice for debuggability, and prevents graceful shutdown of the process. Potentially an option for handling very low-level task management (a la #4740). Roughly takes the shape of: ```rust struct AbortOnPanic; impl Drop for AbortOnPanic { fn drop(&mut self) { abort!(); } } let guard = AbortOnPanic; // Run task std::mem::forget(AbortOnPanic); ``` --- ## Changelog Changed: `bevy_tasks::TaskPool`'s threads will no longer terminate permanently when a task scheduled onto them panics. Changed: `bevy_tasks::Task` and`bevy_tasks::Scope` will propagate panics in the spawned tasks/scopes to the parent thread.
# Objective Right now, the `TaskPool` implementation allows panics to permanently kill worker threads upon panicking. This is currently non-recoverable without using a `std::panic::catch_unwind` in every scheduled task. This is poor ergonomics and even poorer developer experience. This is exacerbated by bevyengine#2250 as these threads are global and cannot be replaced after initialization. Removes the need for temporary fixes like bevyengine#4998. Fixes bevyengine#4996. Fixes bevyengine#6081. Fixes bevyengine#5285. Fixes bevyengine#5054. Supersedes bevyengine#2307. ## Solution The current solution is to wrap `Executor::run` in `TaskPool` with a `catch_unwind`, and discarding the potential panic. This was taken straight from [smol](/~https://github.com/smol-rs/smol/blob/404c7bcc0aea59b82d7347058043b8de7133241c/src/spawn.rs#L44)'s current implementation. ~~However, this is not entirely ideal as:~~ - ~~the signaled to the awaiting task. We would need to change `Task<T>` to use `async_task::FallibleTask` internally, and even then it doesn't signal *why* it panicked, just that it did.~~ (See below). - ~~no error is logged of any kind~~ (See below) - ~~it's unclear if it drops other tasks in the executor~~ (it does not) - ~~This allows the ECS parallel executor to keep chugging even though a system's task has been dropped. This inevitably leads to deadlock in the executor.~~ Assuming we don't catch the unwind in ParallelExecutor, this will naturally kill the main thread. ### Alternatives A final solution likely will incorporate elements of any or all of the following. #### ~~Log and Ignore~~ ~~Log the panic, drop the task, keep chugging. This only addresses the discoverability of the panic. The process will continue to run, probably deadlocking the executor. tokio's detatched tasks operate in this fashion.~~ Panics already do this by default, even when caught by `catch_unwind`. #### ~~`catch_unwind` in `ParallelExecutor`~~ ~~Add another layer catching system-level panics into the `ParallelExecutor`. How the executor continues when a core dependency of many systems fails to run is up for debate.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### ~~Emulate/Copy `tokio::JoinHandle` with `Task<T>`~~ ~~`tokio::JoinHandle<T>` bubbles up the panic from the underlying task when awaited. This can be transitively applied across other APIs that also use `Task<T>` like `Query::par_for_each` and `TaskPool::scope`, bubbling up the panic until it's either caught or it reaches the main thread.~~ `async_task::Task` bubbles up panics already, this will transitively push panics all the way to the main thread. #### Abort on Panic The nuclear option. Log the error, abort the entire process on any thread in the task pool panicking. Definitely avoids any additional infrastructure for passing the panic around, and might actually lead to more efficient code as any unwinding is optimized out. However gives the developer zero options for dealing with the issue, a seemingly poor choice for debuggability, and prevents graceful shutdown of the process. Potentially an option for handling very low-level task management (a la bevyengine#4740). Roughly takes the shape of: ```rust struct AbortOnPanic; impl Drop for AbortOnPanic { fn drop(&mut self) { abort!(); } } let guard = AbortOnPanic; // Run task std::mem::forget(AbortOnPanic); ``` --- ## Changelog Changed: `bevy_tasks::TaskPool`'s threads will no longer terminate permanently when a task scheduled onto them panics. Changed: `bevy_tasks::Task` and`bevy_tasks::Scope` will propagate panics in the spawned tasks/scopes to the parent thread.
Bevy version
Any recent commit, like fb74ca3 or a09dd03
Relevant system information
Windows 11, stable 1.64.0
What you did
cargo run -p ci
on my machineWhat went wrong
Additional information
The same command almost always works ok (i.e., the test passes) if I run it immediately afterwards.
The text was updated successfully, but these errors were encountered: