Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

StaticInputV2 and GeneratedInputV2 missing in paddle.v2.layer #2349

Closed
alvations opened this issue Jun 2, 2017 · 5 comments · Fixed by #2384
Closed

StaticInputV2 and GeneratedInputV2 missing in paddle.v2.layer #2349

alvations opened this issue Jun 2, 2017 · 5 comments · Fixed by #2384
Assignees
Labels

Comments

@alvations
Copy link
Contributor

alvations commented Jun 2, 2017

From the MT chapter in the DL101 book and the machine translation demo with the new python API, paddle.layer.StaticInputV2 and paddle.layer.GeneratedInputV2 throws an AttributeError, e.g.:

AttributeError                            Traceback (most recent call last)
<ipython-input-5-5ce86945bbbe> in <module>()
----> 1 cost = seqToseq_net(source_dict_dim, target_dict_dim)

/Users/liling.tan/seqtoseq.py in seqToseq_net(source_dict_dim, target_dict_dim, is_generating)
    160 
    161     decoder_group_name = "decoder_group"
--> 162     group_input1 = paddle.layer.StaticInputV2(input=encoded_vector, is_seq=True)
    163     group_input2 = StaticInputV2(input=encoded_proj, is_seq=True)
    164     group_inputs = [group_input1, group_input2]

AttributeError: 'module' object has no attribute 'StaticInputV2'

A closer look, they're missing from the top level paddle.layer.__init__.py:

>>> import paddle.v2 as paddle
>>> dir(paddle.layer)
['AggregateLevel', 'BaseGeneratedInput', 'ExpandLevel', 'GeneratedInput', 'LayerOutput', 'ModelConfig', 'SubModelConfig', 'SubsequenceInput', '__all__', '__builtins__', '__convert_name__', '__convert_to_v2__', '__data_layer__', '__doc__', '__file__', '__get_used_evaluators__', '__get_used_layers__', '__get_used_parameters__', '__get_used_submodels__', '__map_data_docstr__', '__name__', '__need_to_keep__', '__need_to_wrap__', '__package__', '__trim_submodel__', 'addto', 'batch_norm', 'beam_search', 'bilinear_interp', 'block_expand', 'classification_cost', 'collections', 'concat', 'config_base', 'context_projection', 'conv_operator', 'conv_projection', 'conv_shift', 'convex_comb', 'copy', 'cos_sim', 'cp', 'crf', 'crf_decoding', 'cross_channel_norm', 'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'ctc', 'data', 'dotmul_operator', 'dotmul_projection', 'embedding', 'eos', 'expand', 'fc', 'first_seq', 'full_matrix_projection', 'get_layer', 'get_output', 'gru_step', 'gru_step_naive', 'grumemory', 'hsigmoid', 'huber_cost', 'identity_projection', 'img_cmrnorm', 'img_conv', 'img_pool', 'interpolation', 'lambda_cost', 'last_seq', 'linear_comb', 'lstm_step', 'lstmemory', 'max_id', 'maxout', 'memory', 'mixed', 'mse_cost', 'multi_binary_label_cross_entropy_cost', 'multiplex', 'name', 'nce', 'new_name', 'obj', 'out_prod', 'pad', 'parse_network', 'pooling', 'power', 'print', 'priorbox', 'rank_cost', 're', 'recurrent', 'recurrent_group', 'regression_cost', 'repeat', 'rotate', 'sampling_id', 'scaling', 'scaling_projection', 'selective_fc', 'seq_concat', 'seq_reshape', 'slope_intercept', 'smooth_l1_cost', 'spp', 'sum_cost', 'sum_to_one_norm', 'table_projection', 'tensor', 'trans', 'trans_full_matrix_projection', 'v1_layers', 'warp_ctc']

>>> 'StaticInputV2' in dir(paddle.layer)
False
>>> 'GeneratedInputV2' in dir(paddle.layer)
False

Currently the ad-hoc solution is to use the old paddle.trainer_config_helpers, e.g.

>>> from paddle.trainer_config_helpers import GeneratedInput 
>>> from paddle.trainer_config_helpers import StaticInput 

This is from version 0.10.0 of the Python API.

$ pip show paddle
Name: paddle
Version: 0.10.0
Summary: Parallel Distributed Deep Learning
Home-page: UNKNOWN
Author: UNKNOWN
Author-email: UNKNOWN
License: UNKNOWN
Location: /usr/local/lib/python2.7/site-packages
Requires: rarfile, matplotlib, protobuf, opencv-python, numpy, requests


$ paddle version
PaddlePaddle 0.10.0, compiled with
    with_avx: ON
    with_gpu: OFF
    with_double: OFF
    with_python: ON
    with_rdma: OFF
    with_timer: OFF
@luotao1
Copy link
Contributor

luotao1 commented Jun 2, 2017

We decide not to maintain the demo since it uses old api. Do you run the train.py in book and find the above bug?

@alvations
Copy link
Contributor Author

Yes, the same bug for paddle.layer.StaticInputV2 appears in the book from train.py.

I was using v0.10.0 and paddle.v2.layer.StaticInputV2 doesn't exist.

I'm reinstalling with the develop branch and see whether the same AttributeError occurs

@luotao1
Copy link
Contributor

luotao1 commented Jun 5, 2017

@alvations

I'm reinstalling with the develop branch and see whether the same AttributeError occurs

How are about it?

@alvations
Copy link
Contributor Author

alvations commented Jun 5, 2017

@luotao1 Thanks for checking in the issue.

I'm still getting the AttributeError with the latest installation from the develop branch. Neither the StaticInputV2 nor the StaticInput is within the namespace of paddle.v2.layer.

>>> import paddle.v2 as paddle

>>> paddle.layer.StaticInputV2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'module' object has no attribute 'StaticInputV2'

>>> 'StaticInputV2' in dir(paddle.layer)
False
>>> 'StaticInput' in dir(paddle.layer)
False

>>> dir(paddle.layer)
['AggregateLevel', 'BaseGeneratedInput', 'ExpandLevel', 'GeneratedInput', 'LayerOutput', 'ModelConfig', 'SubModelConfig', 'SubsequenceInput', '__all__', '__builtins__', '__convert_name__', '__convert_to_v2__', '__data_layer__', '__doc__', '__file__', '__get_used_evaluators__', '__get_used_layers__', '__get_used_parameters__', '__get_used_submodels__', '__map_data_docstr__', '__name__', '__need_to_keep__', '__need_to_wrap__', '__package__', '__trim_submodel__', 'addto', 'batch_norm', 'beam_search', 'bilinear_interp', 'block_expand', 'classification_cost', 'collections', 'concat', 'config_base', 'context_projection', 'conv_operator', 'conv_projection', 'conv_shift', 'convex_comb', 'copy', 'cos_sim', 'cp', 'crf', 'crf_decoding', 'cross_channel_norm', 'cross_entropy_cost', 'cross_entropy_with_selfnorm_cost', 'ctc', 'data', 'dotmul_operator', 'dotmul_projection', 'embedding', 'eos', 'expand', 'fc', 'first_seq', 'full_matrix_projection', 'get_layer', 'get_output', 'gru_step', 'gru_step_naive', 'grumemory', 'hsigmoid', 'huber_cost', 'identity_projection', 'img_cmrnorm', 'img_conv', 'img_pool', 'interpolation', 'lambda_cost', 'last_seq', 'linear_comb', 'lstm_step', 'lstmemory', 'max_id', 'maxout', 'memory', 'mixed', 'mse_cost', 'multi_binary_label_cross_entropy_cost', 'multiplex', 'name', 'nce', 'new_name', 'obj', 'out_prod', 'pad', 'parse_network', 'pooling', 'power', 'print', 'priorbox', 'rank_cost', 're', 'recurrent', 'recurrent_group', 'regression_cost', 'repeat', 'rotate', 'sampling_id', 'scaling', 'scaling_projection', 'selective_fc', 'seq_concat', 'seq_reshape', 'slope_intercept', 'smooth_l1_cost', 'spp', 'sum_cost', 'sum_to_one_norm', 'table_projection', 'tensor', 'trans', 'trans_full_matrix_projection', 'v1_layers', 'warp_ctc']

The strange part is that at /~https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/layer.py#L75 is inheriting the ['StaticInput', 'LayerType', 'layer_support'] to put into the globals() but the AttributeError is still thrown when using paddle.layers.StaticInput

@lcy-seso lcy-seso added the Bug label Jun 5, 2017
@lcy-seso
Copy link
Contributor

lcy-seso commented Jun 5, 2017

Sorry, this is a bug after PaddlePaddle changes its way to parse the network configuration. I am checking it now.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
Projects
None yet
3 participants