This repository has been archived by the owner on Nov 17, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6.8k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MXNet-1343][Fit API]Add CNN integration test for fit() API (#14405)
* added cnn intg tests for fit api * updated cnn intg tests * added functions for nightly test * updated runtime_function * updated intg tests * updated init, datapath, refs * added validation data * update cpu test * refactor code * updated context
- Loading branch information
1 parent
81ec379
commit b1ef99a
Showing
3 changed files
with
183 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
|
||
# Test gluon estimator on CNN models | ||
|
||
import argparse | ||
import numpy as np | ||
import mxnet as mx | ||
from mxnet import gluon, init, nd | ||
from mxnet.gluon import data | ||
from mxnet.gluon.estimator import estimator | ||
from mxnet.gluon.model_zoo import vision | ||
|
||
def load_data_mnist(batch_size, resize=None, num_workers=4): | ||
''' | ||
Load MNIST dataset | ||
''' | ||
transformer = [] | ||
if resize: | ||
transformer += [data.vision.transforms.Resize(resize)] | ||
transformer += [data.vision.transforms.ToTensor()] | ||
transformer = data.vision.transforms.Compose(transformer) | ||
mnist_train = data.vision.MNIST(train=True) | ||
mnist_test = data.vision.MNIST(train=False) | ||
train_iter = data.DataLoader( | ||
mnist_train.transform_first(transformer), batch_size, shuffle=True, | ||
num_workers=num_workers) | ||
test_iter = data.DataLoader( | ||
mnist_test.transform_first(transformer), batch_size, shuffle=False, | ||
num_workers=num_workers) | ||
return train_iter, test_iter | ||
|
||
def bilinear_kernel(in_channels, out_channels, kernel_size): | ||
''' | ||
Bilinear interpolation using transposed convolution | ||
/~https://github.com/d2l-ai/d2l-en/blob/master/chapter_computer-vision/fcn.md | ||
''' | ||
factor = (kernel_size + 1) // 2 | ||
if kernel_size % 2 == 1: | ||
center = factor - 1 | ||
else: | ||
center = factor - 0.5 | ||
og = np.ogrid[:kernel_size, :kernel_size] | ||
filt = (1 - abs(og[0] - center) / factor) * (1 - abs(og[1] - center) / factor) | ||
weight = np.zeros((in_channels, out_channels, kernel_size, kernel_size), dtype='float32') | ||
weight[range(in_channels), range(out_channels), :, :] = filt | ||
return nd.array(weight) | ||
|
||
def get_net(model_name, context): | ||
if model_name == 'FCN': | ||
num_classes = 21 | ||
pretrained_net = vision.resnet18_v2(pretrained=True, ctx=context) | ||
net = gluon.nn.HybridSequential() | ||
for layer in pretrained_net.features[:-2]: | ||
net.add(layer) | ||
net.add(gluon.nn.Conv2D(num_classes, kernel_size=1), | ||
gluon.nn.Conv2DTranspose(num_classes, kernel_size=64, padding=16, strides=32)) | ||
net[-1].initialize(init.Constant(bilinear_kernel(num_classes, num_classes, 64)), ctx=context) | ||
net[-2].initialize(init=init.Xavier(), ctx=context) | ||
input_shape = (1, 3, 320, 480) | ||
label_shape = (1, 320, 480) | ||
loss_axis = 1 | ||
else: | ||
net = vision.get_model(model_name, classes=10) | ||
net.initialize(mx.init.Xavier(), ctx=context) | ||
input_shape = (1, 1, 224, 224) | ||
label_shape = 1 | ||
loss_axis = -1 | ||
return net, input_shape, label_shape, loss_axis | ||
|
||
def test_estimator_cpu(): | ||
''' | ||
Test estimator by doing one pass over each model with synthetic data | ||
''' | ||
models = ['resnet18_v1', | ||
'FCN' | ||
] | ||
context = mx.cpu() | ||
for model_name in models: | ||
net, input_shape, label_shape, loss_axis = get_net(model_name, context) | ||
train_dataset = gluon.data.dataset.ArrayDataset(mx.nd.random.uniform(shape=input_shape), | ||
mx.nd.zeros(shape=label_shape)) | ||
val_dataset = gluon.data.dataset.ArrayDataset(mx.nd.random.uniform(shape=input_shape), | ||
mx.nd.zeros(shape=label_shape)) | ||
loss = gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis) | ||
train_data = gluon.data.DataLoader(train_dataset, batch_size=1) | ||
val_data = gluon.data.DataLoader(val_dataset, batch_size=1) | ||
net.hybridize() | ||
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001}) | ||
# Define estimator | ||
est = estimator.Estimator(net=net, | ||
loss=loss, | ||
metrics=mx.metric.Accuracy(), | ||
trainers=trainer, | ||
context=context) | ||
# Call fit() | ||
est.fit(train_data=train_data, | ||
val_data=val_data, | ||
epochs=1, | ||
batch_size=1) | ||
|
||
def test_estimator_gpu(): | ||
''' | ||
Test estimator by training resnet18_v1 for 5 epochs on MNIST and verify accuracy | ||
''' | ||
model_name = 'resnet18_v1' | ||
batch_size = 128 | ||
num_epochs = 5 | ||
context = mx.gpu(0) | ||
net, _, _, _ = get_net(model_name, context) | ||
train_data, test_data = load_data_mnist(batch_size, resize=224) | ||
loss = gluon.loss.SoftmaxCrossEntropyLoss() | ||
net.hybridize() | ||
acc = mx.metric.Accuracy() | ||
trainer = gluon.Trainer(net.collect_params(), 'sgd', {'learning_rate': 0.001}) | ||
# Define estimator | ||
est = estimator.Estimator(net=net, | ||
loss=loss, | ||
metrics=acc, | ||
trainers=trainer, | ||
context=context) | ||
# Call fit() | ||
est.fit(train_data=train_data, | ||
val_data=test_data, | ||
epochs=num_epochs, | ||
batch_size=batch_size) | ||
|
||
assert est.train_stats['train_'+acc.name][num_epochs-1] > 0.80 | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='test gluon estimator') | ||
parser.add_argument('--type', type=str, default='cpu') | ||
opt = parser.parse_args() | ||
if opt.type == 'cpu': | ||
test_estimator_cpu() | ||
elif opt.type == 'gpu': | ||
test_estimator_gpu() | ||
else: | ||
raise RuntimeError("Unknown test type") |