Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[MXNet-1375][Fit API]Added RNN integration test for fit() API (#14547)
Browse files Browse the repository at this point in the history
* Added RNN integration test for fit() API

* Addressed review comments: change in JenkinFile, tmp directory, ctx with condense if/else, renamed imports

* CPU test doesn't require nvidiadocker container

* Modified the structure by removing the redundant code
  • Loading branch information
karan6181 authored and nswamy committed Apr 3, 2019
1 parent ed7f6e5 commit 81ec379
Show file tree
Hide file tree
Showing 3 changed files with 306 additions and 0 deletions.
14 changes: 14 additions & 0 deletions ci/docker/runtime_functions.sh
Original file line number Diff line number Diff line change
Expand Up @@ -1296,6 +1296,20 @@ nightly_scala_demo_test_cpu() {
bash bin/run_im.sh
}

nightly_estimator_rnn_gpu() {
set -ex
cd /work/mxnet/tests/nightly/estimator
export PYTHONPATH=/work/mxnet/python/
python test_sentiment_rnn.py --type gpu
}

nightly_estimator_rnn_cpu() {
set -ex
cd /work/mxnet/tests/nightly/estimator
export PYTHONPATH=/work/mxnet/python/
python test_sentiment_rnn.py --type cpu
}

# Deploy

deploy_docs() {
Expand Down
16 changes: 16 additions & 0 deletions tests/nightly/Jenkinsfile
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,22 @@ core_logic: {
utils.docker_run('ubuntu_nightly_cpu', 'nightly_test_javascript', false)
}
}
},
'estimator: RNN GPU': {
node(NODE_LINUX_GPU) {
ws('workspace/estimator-test-rnn-gpu') {
utils.unpack_and_init('gpu', mx_lib)
utils.docker_run('ubuntu_nightly_gpu', 'nightly_estimator_test_rnn_gpu', true)
}
}
},
'estimator: RNN CPU': {
node(NODE_LINUX_CPU) {
ws('workspace/estimator-test-rnn-cpu') {
utils.unpack_and_init('cpu', mx_lib)
utils.docker_run('ubuntu_nightly_cpu', 'nightly_estimator_test_rnn_cpu', false)
}
}
}
}
}
Expand Down
276 changes: 276 additions & 0 deletions tests/nightly/estimator/test_sentiment_rnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,276 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Gluon Text Sentiment Classification Example using RNN/CNN
Example modified from below link:
/~https://github.com/d2l-ai/d2l-en/blob/master/chapter_natural-language-processing/sentiment-analysis-rnn.md
/~https://github.com/d2l-ai/d2l-en/blob/master/chapter_natural-language-processing/sentiment-analysis-cnn.md"""

import argparse
import os
import tarfile
import random
import collections
import mxnet as mx
from mxnet import nd, gluon
from mxnet.contrib import text
from mxnet.gluon import nn, rnn
from mxnet.gluon.estimator import estimator


class TextCNN(nn.Block):
def __init__(self, vocab, embed_size, kernel_sizes, num_channels,
**kwargs):
super(TextCNN, self).__init__(**kwargs)
self.embedding = nn.Embedding(len(vocab), embed_size)
# The embedding layer does not participate in training
self.constant_embedding = nn.Embedding(len(vocab), embed_size)
self.dropout = nn.Dropout(0.5)
self.decoder = nn.Dense(2)
# The max-over-time pooling layer has no weight, so it can share an
# instance
self.pool = nn.GlobalMaxPool1D()
# Create multiple one-dimensional convolutional layers
self.convs = nn.Sequential()
for c, k in zip(num_channels, kernel_sizes):
self.convs.add(nn.Conv1D(c, k, activation='relu'))

def forward(self, inputs):
# Concatenate the output of two embedding layers with shape of
# (batch size, number of words, word vector dimension) by word vector
embeddings = nd.concat(
self.embedding(inputs), self.constant_embedding(inputs), dim=2)
# According to the input format required by Conv1D, the word vector
# dimension, that is, the channel dimension of the one-dimensional
# convolutional layer, is transformed into the previous dimension
embeddings = embeddings.transpose((0, 2, 1))
# For each one-dimensional convolutional layer, after max-over-time
# pooling, an NDArray with the shape of (batch size, channel size, 1)
# can be obtained. Use the flatten function to remove the last
# dimension and then concatenate on the channel dimension
encoding = nd.concat(*[nd.flatten(
self.pool(conv(embeddings))) for conv in self.convs], dim=1)
# After applying the dropout method, use a fully connected layer to
# obtain the output
outputs = self.decoder(self.dropout(encoding))
return outputs


class BiRNN(nn.Block):
def __init__(self, vocab, embed_size, num_hiddens, num_layers, **kwargs):
super(BiRNN, self).__init__(**kwargs)
self.embedding = nn.Embedding(len(vocab), embed_size)
# Set Bidirectional to True to get a bidirectional recurrent neural
# network
self.encoder = rnn.LSTM(num_hiddens, num_layers=num_layers,
bidirectional=True, input_size=embed_size)
self.decoder = nn.Dense(2)

def forward(self, inputs):
# The shape of inputs is (batch size, number of words). Because LSTM
# needs to use sequence as the first dimension, the input is
# transformed and the word feature is then extracted. The output shape
# is (number of words, batch size, word vector dimension).
embeddings = self.embedding(inputs.T)
# The shape of states is (number of words, batch size, 2 * number of
# hidden units).
states = self.encoder(embeddings)
# Concatenate the hidden states of the initial time step and final
# time step to use as the input of the fully connected layer. Its
# shape is (batch size, 4 * number of hidden units)
encoding = nd.concat(states[0], states[-1])
outputs = self.decoder(encoding)
return outputs


def download_imdb(data_dir='/tmp/data'):
'''
Download and extract the IMDB dataset
'''
url = ('http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz')
sha1 = '01ada507287d82875905620988597833ad4e0903'
if not os.path.exists(data_dir):
os.makedirs(data_dir)
file_path = os.path.join(data_dir, 'aclImdb_v1.tar.gz')
if not os.path.isfile(file_path):
file_path = gluon.utils.download(url, data_dir, sha1_hash=sha1)
with tarfile.open(file_path, 'r') as f:
f.extractall(data_dir)


def read_imdb(folder='train'):
'''
Read the IMDB dataset
'''
data = []
for label in ['pos', 'neg']:
folder_name = os.path.join('/tmp/data/aclImdb/', folder, label)
for file in os.listdir(folder_name):
with open(os.path.join(folder_name, file), 'rb') as f:
review = f.read().decode('utf-8').replace('\n', '').lower()
data.append([review, 1 if label == 'pos' else 0])
random.shuffle(data)
return data


def get_tokenized_imdb(data):
'''
Tokenized the words
'''

def tokenizer(text):
return [tok.lower() for tok in text.split(' ')]

return [tokenizer(review) for review, _ in data]


def get_vocab_imdb(data):
'''
Get the indexed tokens
'''
tokenized_data = get_tokenized_imdb(data)
counter = collections.Counter([tk for st in tokenized_data for tk in st])
return text.vocab.Vocabulary(counter, min_freq=5)


def preprocess_imdb(data, vocab):
'''
Make the length of each comment 500 by truncating or adding 0s
'''
max_l = 500

def pad(x):
return x[:max_l] if len(x) > max_l else x + [0] * (max_l - len(x))

tokenized_data = get_tokenized_imdb(data)
features = nd.array([pad(vocab.to_indices(x)) for x in tokenized_data])
labels = nd.array([score for _, score in data])
return features, labels


def run(net, train_dataloader, test_dataloader, **kwargs):
'''
Train a test sentiment model
'''
num_epochs = kwargs['epochs']
ctx = kwargs['ctx']
batch_size = kwargs['batch_size']
lr = kwargs['lr']

# Define trainer
trainer = mx.gluon.Trainer(net.collect_params(), 'adam', {'learning_rate': lr})
# Define loss and evaluation metrics
loss = gluon.loss.SoftmaxCrossEntropyLoss()
acc = mx.metric.Accuracy()

# Define estimator
est = estimator.Estimator(net=net, loss=loss, metrics=acc,
trainers=trainer, context=ctx)
# Begin training
est.fit(train_data=train_dataloader, val_data=test_dataloader,
epochs=num_epochs, batch_size=batch_size)
return est


def test_estimator_cpu(**kwargs):
'''
Test estimator by doing one pass over each model with synthetic data
'''
models = ['TextCNN', 'BiRNN']
ctx = kwargs['ctx']
batch_size = kwargs['batch_size']
embed_size = kwargs['embed_size']

train_data = mx.nd.random.randint(low=0, high=100, shape=(2 * batch_size, 500))
train_label = mx.nd.random.randint(low=0, high=2, shape=(2 * batch_size,))
val_data = mx.nd.random.randint(low=0, high=100, shape=(batch_size, 500))
val_label = mx.nd.random.randint(low=0, high=2, shape=(batch_size,))

train_dataloader = gluon.data.DataLoader(dataset=gluon.data.ArrayDataset(train_data, train_label),
batch_size=batch_size, shuffle=True)
val_dataloader = gluon.data.DataLoader(dataset=gluon.data.ArrayDataset(val_data, val_label),
batch_size=batch_size)
vocab_list = mx.nd.zeros(shape=(100,))

# Get the model
for model in models:
if model == 'TextCNN':
kernel_sizes, nums_channels = [3, 4, 5], [100, 100, 100]
net = TextCNN(vocab_list, embed_size, kernel_sizes, nums_channels)
else:
num_hiddens, num_layers = 100, 2
net = BiRNN(vocab_list, embed_size, num_hiddens, num_layers)
net.initialize(mx.init.Xavier(), ctx=ctx)

run(net, train_dataloader, val_dataloader, **kwargs)


def test_estimator_gpu(**kwargs):
'''
Test estimator by training Bidirectional RNN for 5 epochs on the IMDB dataset
and verify accuracy
'''
ctx = kwargs['ctx']
batch_size = kwargs['batch_size']
num_epochs = kwargs['epochs']
embed_size = kwargs['embed_size']

# data
download_imdb()
train_data, test_data = read_imdb('train'), read_imdb('test')
vocab = get_vocab_imdb(train_data)

train_set = gluon.data.ArrayDataset(*preprocess_imdb(train_data, vocab))
test_set = gluon.data.ArrayDataset(*preprocess_imdb(test_data, vocab))
train_dataloader = gluon.data.DataLoader(train_set, batch_size, shuffle=True)
test_dataloader = gluon.data.DataLoader(test_set, batch_size)

# Model
num_hiddens, num_layers = 100, 2
net = BiRNN(vocab, embed_size, num_hiddens, num_layers)
net.initialize(mx.init.Xavier(), ctx=ctx)

glove_embedding = text.embedding.create(
'glove', pretrained_file_name='glove.6B.100d.txt', vocabulary=vocab)

net.embedding.weight.set_data(glove_embedding.idx_to_vec)
net.embedding.collect_params().setattr('grad_req', 'null')

est = run(net, train_dataloader, test_dataloader, **kwargs)

assert est.train_stats['train_accuracy'][num_epochs - 1] > 0.70


parser = argparse.ArgumentParser(description='test gluon estimator')
parser.add_argument('--type', type=str, default='cpu')
opt = parser.parse_args()
kwargs = {
'batch_size': 64,
'lr': 0.01,
'embed_size': 100
}

if opt.type == 'cpu':
kwargs['ctx'] = mx.cpu()
kwargs['epochs'] = 1
test_estimator_cpu(**kwargs)
elif opt.type == 'gpu':
kwargs['ctx'] = mx.gpu()
kwargs['epochs'] = 5
test_estimator_gpu(**kwargs)
else:
raise RuntimeError("Unknown test type")

0 comments on commit 81ec379

Please sign in to comment.