Skip to content
This repository has been archived by the owner on Nov 17, 2023. It is now read-only.

Commit

Permalink
[MXNET-1291] solve pylint errors in examples with issue no.12205 (#13938
Browse files Browse the repository at this point in the history
)

* Unify the style of comments

Unify the style of comments

* Unify the style of comments

Unify the style of comments

* Correct the misuse of tenses 

Correct the misuse of tenses from preprocessed to preprocesses

* Enhance the comment for better description

1. Add reference of the paper in comment.
2. Change the comments from  "Run training to CapsNet" to "Perform CapsNet training"

* Remove a redundant noun

Remove a redundant noun 'dataset'

* Unify the style of comments

Align the style of comment from single-line comment to multi-line comment

* Correct the misdescription of LogSoftmax class

Correct the misdescription comment of LogSoftmax class from 'softmax loss function' to 'logarithm of softmax'

* Remove the '#' symbol in the header comment

Remove the '#' symbol in the header comment

* update the result of pylint pipeline

update out pylint pipeline to ensure all these points are caught

* retrigger the CI
  • Loading branch information
cchung100m authored and marcoabreu committed Mar 14, 2019
1 parent ae55b75 commit 9fd3153
Show file tree
Hide file tree
Showing 5 changed files with 81 additions and 58 deletions.
2 changes: 1 addition & 1 deletion example/bayesian-methods/bdk_demo.py
Original file line number Diff line number Diff line change
Expand Up @@ -58,7 +58,7 @@ def backward(self, out_grad, in_data, out_data, in_grad):


class LogSoftmax(mx.operator.NumpyOp):
"""Generate helper functions to evaluate softmax loss function"""
"""Generate helper functions to calculate the logarithm of softmax"""
def __init__(self):
super(LogSoftmax, self).__init__(False)

Expand Down
7 changes: 5 additions & 2 deletions example/capsnet/capsulenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,10 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Generate MXNet implementation of CapsNet"""
"""Generate MXNet implementation of CapsNet
Reference 1: https://www.cs.toronto.edu/~fritz/absps/transauto6.pdf
Reference 2: https://arxiv.org/pdf/1710.09829.pdf
"""
import os
import re
import gzip
Expand Down Expand Up @@ -190,7 +193,7 @@ def __call__(self, num_update):


def do_training(num_epoch, optimizer, kvstore, learning_rate, model_prefix, decay):
"""Run training to CapsNet"""
"""Perform CapsNet training"""
summary_writer = SummaryWriter(args.tblog_dir)
lr_scheduler = SimpleLRScheduler(learning_rate)
optimizer_params = {'lr_scheduler': lr_scheduler}
Expand Down
1 change: 0 additions & 1 deletion example/ctc/multiproc_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""Contains a class for handling multi-process data generation"""

from __future__ import print_function
Expand Down
67 changes: 41 additions & 26 deletions example/gluon/dc_gan/dcgan.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,28 +14,27 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
"""Generate MXNet implementation of Deep Convolutional Generative Adversarial Networks"""

import matplotlib as mpl
mpl.use('Agg')
from matplotlib import pyplot as plt

import logging
from datetime import datetime
import argparse
import os
import time
import numpy as np
from matplotlib import pyplot as plt
import matplotlib as mpl
import mxnet as mx
from mxnet import gluon
from mxnet.gluon import nn
from mxnet import autograd
import numpy as np
import logging
from datetime import datetime
import os
import time

from inception_score import get_inception_score

mpl.use('Agg')


def fill_buf(buf, i, img, shape):
"""
Reposition the images generated by the generator so that it can be saved as picture matrix.
"""Reposition the images generated by the generator so that it can be saved as picture matrix.
:param buf: the images metric
:param i: index of each image
:param img: images generated by generator once
Expand All @@ -48,12 +47,10 @@ def fill_buf(buf, i, img, shape):
sx = (i%m)*shape[0]
sy = (i//m)*shape[1]
buf[sy:sy+shape[1], sx:sx+shape[0], :] = img
return None


def visual(title, X, name):
"""
Image visualization and preservation
"""Image visualization and preservation
:param title: title
:param X: images to visualized
:param name: saved picture`s name
Expand All @@ -79,17 +76,20 @@ def visual(title, X, name):
parser.add_argument('--batch-size', type=int, default=64, help='input batch size, default is 64')
parser.add_argument('--nz', type=int, default=100, help='size of the latent z vector, default is 100')
parser.add_argument('--ngf', type=int, default=64, help='the channel of each generator filter layer, default is 64.')
parser.add_argument('--ndf', type=int, default=64, help='the channel of each descriminator filter layer, default is 64.')
parser.add_argument('--ndf', type=int, default=64, help='the channel of each descriminator filter layer, '
'default is 64.')
parser.add_argument('--nepoch', type=int, default=25, help='number of epochs to train for, default is 25.')
parser.add_argument('--niter', type=int, default=10, help='save generated images and inception_score per niter iters, default is 100.')
parser.add_argument('--niter', type=int, default=10, help='save generated images and inception_score per niter iters, '
'default is 100.')
parser.add_argument('--lr', type=float, default=0.0002, help='learning rate, default=0.0002')
parser.add_argument('--beta1', type=float, default=0.5, help='beta1 for adam. default=0.5')
parser.add_argument('--cuda', action='store_true', help='enables cuda')
parser.add_argument('--netG', default='', help="path to netG (to continue training)")
parser.add_argument('--netD', default='', help="path to netD (to continue training)")
parser.add_argument('--outf', default='./results', help='folder to output images and model checkpoints')
parser.add_argument('--check-point', default=True, help="save results at each epoch or not")
parser.add_argument('--inception_score', type=bool, default=True, help='To record the inception_score, default is True.')
parser.add_argument('--inception_score', type=bool, default=True, help='To record the inception_score, '
'default is True.')

opt = parser.parse_args()
print(opt)
Expand All @@ -115,6 +115,7 @@ def visual(title, X, name):


def transformer(data, label):
"""Get the translation of images"""
# resize to 64x64
data = mx.image.imresize(data, 64, 64)
# transpose from (64, 64, 3) to (3, 64, 64)
Expand All @@ -128,7 +129,17 @@ def transformer(data, label):


# get dataset with the batch_size num each time
def get_dataset(dataset):
def get_dataset(dataset_name):
"""Load the dataset and split it to train/valid data
:param dataset_name: string
Returns:
train_data: int array
training dataset
val_data: int array
valid dataset
"""
# mnist
if dataset == "mnist":
train_data = gluon.data.DataLoader(
Expand All @@ -152,6 +163,7 @@ def get_dataset(dataset):


def get_netG():
"""Get net G"""
# build the generator
netG = nn.Sequential()
with netG.name_scope():
Expand Down Expand Up @@ -180,6 +192,7 @@ def get_netG():


def get_netD():
"""Get the netD"""
# build the discriminator
netD = nn.Sequential()
with netD.name_scope():
Expand All @@ -206,6 +219,7 @@ def get_netD():


def get_configurations(netG, netD):
"""Get configurations for net"""
# loss
loss = gluon.loss.SoftmaxCrossEntropyLoss()

Expand Down Expand Up @@ -233,6 +247,7 @@ def ins_save(inception_score):

# main function
def main():
"""Entry point to dcgan"""
print("|------- new changes!!!!!!!!!")
# to get the dataset and net configuration
train_data, val_data = get_dataset(dataset)
Expand Down Expand Up @@ -300,7 +315,7 @@ def main():

name, acc = metric.get()
logging.info('discriminator loss = %f, generator loss = %f, binary training acc = %f at iter %d epoch %d'
% (mx.nd.mean(errD).asscalar(), mx.nd.mean(errG).asscalar(), acc, iter, epoch))
, mx.nd.mean(errD).asscalar(), mx.nd.mean(errG).asscalar(), acc, iter, epoch)
if iter % niter == 0:
visual('gout', fake.asnumpy(), name=os.path.join(outf, 'fake_img_iter_%d.png' % iter))
visual('data', data.asnumpy(), name=os.path.join(outf, 'real_img_iter_%d.png' % iter))
Expand All @@ -316,13 +331,13 @@ def main():

name, acc = metric.get()
metric.reset()
logging.info('\nbinary training acc at epoch %d: %s=%f' % (epoch, name, acc))
logging.info('time: %f' % (time.time() - tic))
logging.info('\nbinary training acc at epoch %d: %s=%f', epoch, name, acc)
logging.info('time: %f', time.time() - tic)

# save check_point
if check_point:
netG.save_parameters(os.path.join(outf,'generator_epoch_%d.params' %epoch))
netD.save_parameters(os.path.join(outf,'discriminator_epoch_%d.params' % epoch))
netG.save_parameters(os.path.join(outf, 'generator_epoch_%d.params' %epoch))
netD.save_parameters(os.path.join(outf, 'discriminator_epoch_%d.params' % epoch))

# save parameter
netG.save_parameters(os.path.join(outf, 'generator.params'))
Expand All @@ -335,6 +350,6 @@ def main():

if __name__ == '__main__':
if opt.inception_score:
print("Use inception_score to metric this DCgan model, the reusult is save as a picture named \"inception_score.png\"!")
print("Use inception_score to metric this DCgan model, the reusult is save as a picture "
"named \"inception_score.png\"!")
main()

62 changes: 34 additions & 28 deletions example/gluon/lstm_crf/lstm_crf.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,46 +14,50 @@
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

"""This example demonstrates how the LSTM-CRF model can be implemented
in Gluon to perform noun-phrase chunking as a sequence labeling task.
"""
import sys
import mxnet as mx
from mxnet import autograd as ag, ndarray as nd, gluon
from mxnet.gluon import Block, nn, rnn
import mxnet.optimizer as optim
import sys

# This example demonstrates how the LSTM-CRF model can be implemented
# in Gluon to perform noun-phrase chunking as a sequence labeling task.

mx.random.seed(1)


# Helper functions to make the code more readable.
def to_scalar(x):
return int(x.asscalar())


def argmax(vec):
# return the argmax as a python int
idx = nd.argmax(vec, axis=1)
return to_scalar(idx)

def prepare_sequence(seq, word2idx):
return nd.array([word2idx[w] for w in seq])

def prepare_sequence(seq, word2Idx):
return nd.array([word2Idx[w] for w in seq])


# Compute log sum exp is numerically more stable than multiplying probabilities
def log_sum_exp(vec):
max_score = nd.max(vec).asscalar()
return nd.log(nd.sum(nd.exp(vec - max_score))) + max_score


# Model
class BiLSTM_CRF(Block):
def __init__(self, vocab_size, tag2idx, embedding_dim, hidden_dim):
"""Get BiLSTM_CRF model"""
def __init__(self, vocab_size, tag2Idx, embedding_dim, hidden_dim):
super(BiLSTM_CRF, self).__init__()
with self.name_scope():
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag2idx = tag2idx
self.tagset_size = len(tag2idx)

self.tag2idx = tag2Idx
self.tagset_size = len(tag2Idx)
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
self.lstm = rnn.LSTM(hidden_dim // 2, num_layers=1, bidirectional=True)

Expand All @@ -62,9 +66,7 @@ def __init__(self, vocab_size, tag2idx, embedding_dim, hidden_dim):

# Matrix of transition parameters. Entry i,j is the score of
# transitioning *to* i *from* j.
self.transitions = self.params.get("crf_transition_matrix",
shape=(self.tagset_size, self.tagset_size))

self.transitions = self.params.get("crf_transition_matrix", shape=(self.tagset_size, self.tagset_size))
self.hidden = self.init_hidden()

def init_hidden(self):
Expand Down Expand Up @@ -98,24 +100,25 @@ def _forward_alg(self, feats):
alpha = log_sum_exp(terminal_var)
return alpha

def _get_lstm_features(self, sentence):
def _get_lstm_features(self, sentences):
self.hidden = self.init_hidden()
length = sentence.shape[0]
embeds = self.word_embeds(sentence).reshape((length, 1, -1))
length = sentences.shape[0]
embeds = self.word_embeds(sentences).reshape((length, 1, -1))
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.reshape((length, self.hidden_dim))
lstm_feats = self.hidden2tag(lstm_out)
return nd.split(lstm_feats, num_outputs=length, axis=0, squeeze_axis=True)

def _score_sentence(self, feats, tags):
def _score_sentence(self, feats, tags_array):
# Gives the score of a provided tag sequence
score = nd.array([0])
tags = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags, dim=0)
for i, feat in enumerate(feats):
tags_array = nd.concat(nd.array([self.tag2idx[START_TAG]]), *tags_array, dim=0)
for idx, feat in enumerate(feats):
score = score + \
self.transitions.data()[to_scalar(tags[i+1]), to_scalar(tags[i])] + feat[to_scalar(tags[i+1])]
self.transitions.data()[to_scalar(tags_array[idx+1]),
to_scalar(tags_array[idx])] + feat[to_scalar(tags_array[idx+1])]
score = score + self.transitions.data()[self.tag2idx[STOP_TAG],
to_scalar(tags[int(tags.shape[0]-1)])]
to_scalar(tags.array[int(tags_array.shape[0]-1)])]
return score

def _viterbi_decode(self, feats):
Expand Down Expand Up @@ -160,20 +163,21 @@ def _viterbi_decode(self, feats):
best_path.reverse()
return path_score, best_path

def neg_log_likelihood(self, sentence, tags):
feats = self._get_lstm_features(sentence)
def neg_log_likelihood(self, sentences, tags_list):
feats = self._get_lstm_features(sentences)
forward_score = self._forward_alg(feats)
gold_score = self._score_sentence(feats, tags)
gold_score = self._score_sentence(feats, tags_list)
return forward_score - gold_score

def forward(self, sentence): # dont confuse this with _forward_alg above.
def forward(self, sentences): # dont confuse this with _forward_alg above.
# Get the emission scores from the BiLSTM
lstm_feats = self._get_lstm_features(sentence)
lstm_feats = self._get_lstm_features(sentences)

# Find the best path, given the features.
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq


# Run training
START_TAG = "<START>"
STOP_TAG = "<STOP>"
Expand Down Expand Up @@ -210,6 +214,7 @@ def forward(self, sentence): # dont confuse this with _forward_alg above.
for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data

neg_log_likelihood_acc = 0.
iter = 0
for i, (sentence, tags) in enumerate(training_data):
# Step 1. Get our inputs ready for the network, that is,
# turn them into Variables of word indices.
Expand All @@ -226,7 +231,8 @@ def forward(self, sentence): # dont confuse this with _forward_alg above.
neg_log_likelihood.backward()
optimizer.step(1)
neg_log_likelihood_acc += neg_log_likelihood.mean()
print("Epoch [{}], Negative Log Likelihood {:.4f}".format(epoch, neg_log_likelihood_acc.asscalar()/(i+1)))
iter = i
print("Epoch [{}], Negative Log Likelihood {:.4f}".format(epoch, neg_log_likelihood_acc.asscalar()/(iter+1)))

# Check predictions after training
precheck_sent = prepare_sequence(training_data[0][0], word2idx)
Expand Down

0 comments on commit 9fd3153

Please sign in to comment.