An impementation of "Bootstrapping User and Item Representations for One-Class Collaborative Filtering".
Additionally, formulation of cold start problem over the existing paper.
Store ml-100k dataset under data
Training:
python3 train.py
Options for Training:
python3 train.py --exp_name [experiment name] --exp_disc [experiment discription] --model [type of model used]
--latent_size [latent embeddings size] --epochs [num of epochs] --lr [learning rate]
--weight_decay [weight decay] --batch_size [] --momentum [] --train_ratio [train-test split ratio]
--num_workers [workers for dataLoader] --cold_start [flag for performing cold start]
--cold_start_clusters [num of cluster in cold start kmeans]
Output logs and Plots will be saved in ./experiments/{exp_name}