-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
194 lines (155 loc) · 6.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import numpy as np
import torch
from torch.utils.data import DataLoader
import os
import json
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
# buir dependencies
from models.BUIR_ID import BUIR_ID
from models.BUIR_NB import BUIR_NB
from buir.utils import init_logger, get_logger, init_device, get_device
from buir.options import args_parser
from buir.dataset import NUM_ITEMS, NUM_USERS, form_metadata_df, get_test_train_interactions, get_test_train_interactions_cold_start, get_zip_df, init_data_matrices, get_adj_matrix
from buir.evaluation import evaluate, print_eval_results, plot_eval_results
# -------------- set seed --------------
np.random.seed(0)
torch.manual_seed(0)
torch.cuda.manual_seed_all(0)
# -------------- setup experiment --------------
args = args_parser()
EXP_FOLDER = f"experiments/{args.exp_name}"
os.makedirs(EXP_FOLDER, exist_ok=True)
init_logger(f"{EXP_FOLDER}/logs.log")
logger = get_logger()
with open(f"{EXP_FOLDER}/exp-info.json", "w") as fp:
json.dump(vars(args), fp, indent=4)
init_device()
device = get_device()
logger.info(f"device used: {device}")
# -------------- get data --------------
init_data_matrices()
if args.cold_start:
train_interactions_ds, test_interactions_ds, train_mat, test_mat, train_users, test_users = get_test_train_interactions_cold_start(args.train_ratio)
else:
train_interactions_ds, test_interactions_ds, train_mat, test_mat = get_test_train_interactions(args.train_ratio)
train_dataloader = DataLoader(
train_interactions_ds,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
)
test_dataloader = DataLoader(
test_interactions_ds,
batch_size=args.batch_size,
num_workers=args.num_workers,
shuffle=True,
)
# -------------- setup model --------------
if args.model == "buir-id":
model = BUIR_ID(NUM_USERS, NUM_ITEMS, args.latent_size, args.momentum)
elif args.model == "buir-nb":
norm_adj_mat = get_adj_matrix()
model = BUIR_NB(NUM_USERS, NUM_ITEMS, args.latent_size, norm_adj_mat, args.momentum)
else:
logger.error("Invalid model type: {} -- chocies : 'buir-nb', 'buir-id' (default)".format(args.model))
exit(1)
model = model.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
logger.info("model initialized!")
# -------------- training --------------
epoch_tr_losses = []
epoch_te_losses = []
eval_results = []
for epoch in range(args.epochs):
logger.info("======================")
train_loss, train_samples = 0, 0
model.train()
for (b_users, b_items) in train_dataloader:
b_users, b_items = b_users.to(device), b_items.to(device)
optimizer.zero_grad()
u_online, u_target, i_online, i_target = model((b_users, b_items))
b_loss = model.get_loss((u_online, u_target, i_online, i_target))
train_loss += b_loss.item() * b_users.shape[0]
train_samples += b_users.shape[0]
b_loss.backward()
optimizer.step()
model._update_target()
train_loss /= train_samples
epoch_tr_losses.append(train_loss)
logger.info(f"train loss after epoch {epoch}: loss ({train_loss:.5f})")
model.eval()
test_loss, test_samples = 0, 0
with torch.no_grad():
for (b_users, b_items) in test_dataloader:
b_users, b_items = b_users.to(device), b_items.to(device)
u_online, u_target, i_online, i_target = model((b_users, b_items))
b_loss = model.get_loss((u_online, u_target, i_online, i_target))
test_loss += b_loss.item() * b_users.shape[0]
test_samples += b_users.shape[0]
eval_result = evaluate(model, test_dataloader, train_mat, None, test_mat)
print_eval_results(logger, eval_result)
test_loss /= test_samples
epoch_te_losses.append(test_loss)
logger.info(f"test loss after epoch {epoch}: loss ({test_loss:.5f})")
eval_results.append(eval_result)
# -------------- save exp results --------------
plt.figure()
plt.plot(range(args.epochs), epoch_tr_losses, label="train losses")
plt.plot(range(args.epochs), epoch_te_losses, label="test losses")
plt.xlabel("epochs")
plt.ylabel("loss")
plt.title("training metrics")
plt.legend()
plt.savefig(f"{EXP_FOLDER}/loss-plot.png")
plot_eval_results(plt, EXP_FOLDER, eval_results)
# -------------- saving model -------------
torch.save(model, f"{EXP_FOLDER}/model.pt")
# -------------- cold start -------------
logger.info("cold start problem init!")
# perform clustering
zip_df = get_zip_df()
meta_mat = form_metadata_df(zip_df)
train_meta_mat, test_meta_mat = meta_mat[train_users], meta_mat[test_users]
kmeans = KMeans(n_clusters=args.cold_start_clusters, random_state=0).fit(train_meta_mat)
neighbours = kmeans.predict(test_meta_mat)
logger.info("kmeans performed for cold start")
# metrics
metric_names = ["P"]
metric_vals = [10, 20, 50]
metrics = {}
for mn in metric_names:
for mv in metric_vals:
metrics[f"{mn}{mv}"] = []
# evaluate
with torch.no_grad():
for _n_uidx in range(len(test_users)):
test_uidx = test_users[_n_uidx]
test_uratings = test_mat[test_uidx]
# calculate mean embedding
neighbouring_users = train_users[kmeans.labels_ == neighbours[_n_uidx]]
u_online = 0
for _neigh_user in neighbouring_users:
u_online += model.uo_encoder(torch.tensor([_neigh_user])).squeeze()
u_online /= len(neighbouring_users)
# calculate scores
scores = []
for _item_idx in range(len(test_uratings)):
if test_uratings[_item_idx] == 0:
scores.append(-np.inf)
continue
i_online = model.io_encoder(torch.tensor([_item_idx])).squeeze()
u_online_p = model.predictor(u_online)
i_online_p = model.predictor(i_online)
score_ = torch.sum(u_online_p * i_online) + torch.sum(i_online_p * u_online)
scores.append(score_.item())
# calculate metrics
# top-k matches (P)
scores_sorted = np.argsort(scores)[::-1]
test_ratings_sorted = np.argsort(test_uratings)[::-1]
for mv in metric_vals:
metrics[f"P{mv}"].append(np.isin(scores_sorted[:mv], test_ratings_sorted[:mv]).sum() / mv)
for mn in metric_names:
for mv in metric_vals:
metrics[f"{mn}{mv}"] = np.mean(metrics[f"{mn}{mv}"])
logger.info(f"COLD START METRICS: {metrics}")