Language-independent Continuous Benchmarking (CB) for Apache Arrow
This package contains Python macro benchmarks for Apache Arrow, as well as external benchmark wrappers that execute and record the results for both the Arrow C++, Java, and JavaScript micro benchmarks (which are found in the arrow repository), and the Arrow R macro benchmarks (which are found in the arrowbench repository). These benchmarks use the Conbench legacy runner for benchmark execution, and the results are published to Arrow's public Conbench server.
On each commit to the main Arrow
branch, the C++, Python, Java, JavaScript, and R benchmarks are run on a
variety of physical benchmarking machines & EC2 instances of different sizes,
and the results are published to Conbench. Additionally, benchmarks can
also be run on an Arrow pull request by adding a GitHub comment with
the text: @ursabot please benchmark
. A baseline benchmarking run
against the pull request's head with also be scheduled, and Conbench
comparison links will be posted as a follow-up GitHub comment.
You can also filter the pull request benchmarks runs by filter name,
language, or specific command. A GitHub comment with text
@ursabot benchmark help
will follow-up with a list of available
ursabot benchmark commands.
@ursabot benchmark help
@ursabot please benchmark
@ursabot please benchmark lang=Python
@ursabot please benchmark lang=C++
@ursabot please benchmark lang=Java
@ursabot please benchmark lang=JavaScript
@ursabot please benchmark lang=R
@ursabot please benchmark name=file-write
@ursabot please benchmark name=file-write lang=Python
@ursabot please benchmark name=file-.*
@ursabot please benchmark command=cpp-micro --suite-filter=arrow-compute-vector-selection-benchmark --benchmark-filter=TakeStringRandomIndicesWithNulls/262144/2 --iterations=3
Benchmarks added to this repository and declared in
benchmarks.json
will automatically be picked up by by Arrow's Continuous Benchmarking
pipeline. This file is regenerated each time the unit tests are run
based on the various benchmark class attributes. See the
BenchmarkList
class for more information on how to override any of the benchmark
defaults or to disable a particular benchmark.
$ cd
$ mkdir -p envs
$ mkdir -p workspace
$ mkdir -p data
$ export BENCHMARKS_DATA_DIR=$(pwd)/data
$ export ARROWBENCH_DATA_DIR=$(pwd)/data
$ cd ~/envs
$ python3 -m venv qa
$ source qa/bin/activate
(qa) $ cd ~/workspace/
(qa) $ git clone /~https://github.com/voltrondata-labs/benchmarks.git
(qa) $ git clone /~https://github.com/apache/arrow.git
(qa) $ export ARROW_SRC=$(pwd)/arrow
(qa) $ cd ~/workspace/benchmarks/
(qa) $ pip install -e '.[dev]'
$ R
> install.packages('remotes')
> remotes::install_github("voltrondata-labs/arrowbench")
(qa) $ cd ~/workspace/
(qa) $ pip install -e arrow/dev/archery
(This is only needed if you plan on publishing benchmark results to a Conbench server.)
(qa) $ cd ~/workspace/benchmarks/
(qa) $ cat .conbench
url: http://localhost:5000
email: conbench@example.com
password: conbench
(qa) $ cd ~/workspace/benchmarks/
(qa) $ pytest -vv benchmarks/tests/
(qa) $ cd ~/workspace/benchmarks/
(qa) $ git status
modified: foo.py
(qa) $ black foo.py
reformatted foo.py
(qa) $ git add foo.py
(qa) $ cd ~/workspace/benchmarks/
(qa) $ isort .
Fixing foo.py
(qa) $ git add foo.py
(qa) $ cd ~/workspace/benchmarks/
(qa) $ flake8
./foo/bar/__init__.py:1:1: F401 'FooBar' imported but unused
(qa) $ cd ~/workspace/benchmarks/
(qa) $ coverage run --source benchmarks -m pytest benchmarks/tests/
(qa) $ coverage report -m
(qa) $ cd ~/workspace/benchmarks/
(qa) $ pytest -vv --capture=no benchmarks/tests/test_file_benchmark.py
test_file_benchmark.py::test_read[parquet, uncompressed, table] PASSED
test_file_benchmark.py::test_read[parquet, uncompressed, dataframe] PASSED
test_file_benchmark.py::test_read[parquet, snappy, table] PASSED
test_file_benchmark.py::test_read[parquet, snappy, dataframe] PASSED
...
Conbench can be run from either of the following directories.
(qa) $ cd ~/workspace/benchmarks/
(qa) $ cd ~/workspace/benchmarks/benchmarks/
Use the conbench --help
command to see the available benchmarks.
(qa) $ conbench --help
Usage: conbench [OPTIONS] COMMAND [ARGS]...
Conbench: Language-independent Continuous Benchmarking (CB) Framework
Options:
--help Show this message and exit.
Commands:
cpp-micro Run the Arrow C++ micro benchmarks.
csv-read Run csv-read benchmark.
dataframe-to-table Run dataframe-to-table benchmark.
dataset-filter Run dataset-filter benchmark.
dataset-read Run dataset-read benchmark(s).
dataset-select Run dataset-select benchmark.
dataset-selectivity Run dataset-selectivity benchmark(s).
example-R-only Run example-R-only benchmark.
example-R-only-exception Run example-R-only-exception benchmark.
example-R-only-no-result Run example-R-only-no-result benchmark.
example-cases Run example-cases benchmark(s).
example-cases-exception Run example-cases-exception benchmark(s).
example-external Run example-external benchmark.
example-simple Run example-simple benchmark.
example-simple-exception Run example-simple-exception benchmark.
file-read Run file-read benchmark(s).
file-write Run file-write benchmark(s).
java-micro Run the Arrow Java micro benchmarks.
js-micro Run the Arrow JavaScript micro benchmarks.
list List of benchmarks (for orchestration).
partitioned-dataset-filter Run partitioned-dataset-filter benchmark(s).
wide-dataframe Run wide-dataframe benchmark(s).
Help is also available for individual benchmark commands.
(qa) $ conbench file-write --help
Usage: conbench file-write [OPTIONS] SOURCE
Run file-write benchmark(s).
For each benchmark option, the first option value is the default.
Valid benchmark combinations:
--file-type=parquet --compression=uncompressed --input-type=table
--file-type=parquet --compression=uncompressed --input-type=dataframe
--file-type=parquet --compression=snappy --input-type=table
--file-type=parquet --compression=snappy --input-type=dataframe
--file-type=feather --compression=uncompressed --input-type=table
--file-type=feather --compression=uncompressed --input-type=dataframe
--file-type=feather --compression=lz4 --input-type=table
--file-type=feather --compression=lz4 --input-type=dataframe
To run all combinations:
$ conbench file-write --all=true
Options:
--file-type [feather|parquet]
--compression [lz4|snappy|uncompressed]
--input-type [dataframe|table]
--all BOOLEAN [default: false]
--language [Python|R]
--cpu-count INTEGER
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Name of run (commit, pull request, etc).
--help Show this message and exit.
Example benchmark execution.
(qa) $ conbench file-read nyctaxi_sample --file-type=feather --compression=lz4 --output-type=dataframe --iterations=10 --gc-disable=false
Benchmark result:
{
"batch_id": "3d97e0185ef44d0d9d095f4b9fdd3fd2",
"run_id": "54c00bfd6b6147739bbf1224cfdf9b1d",
"timestamp": "2021-11-11T00:32:15.061174+00:00"
"context": {
"arrow_compiler_flags": " -Qunused-arguments -fcolor-diagnostics -O3 -DNDEBUG",
"benchmark_language": "Python"
},
"github": {
"commit": "4591d76fce2846a29dac33bf01e9ba0337b118e9",
"repository": "/~https://github.com/apache/arrow"
},
"info": {
"arrow_compiler_id": "AppleClang",
"arrow_compiler_version": "12.0.0.12000032",
"arrow_version": "5.0.0",
"benchmark_language_version": "Python 3.9.7"
},
"machine_info": {
"architecture_name": "arm64",
"cpu_core_count": "8",
"cpu_frequency_max_hz": "0",
"cpu_l1d_cache_bytes": "65536",
"cpu_l1i_cache_bytes": "131072",
"cpu_l2_cache_bytes": "4194304",
"cpu_l3_cache_bytes": "0",
"cpu_model_name": "Apple M1",
"cpu_thread_count": "8",
"gpu_count": "0",
"gpu_product_names": [],
"kernel_name": "20.6.0",
"memory_bytes": "17179869184",
"name": "diana",
"os_name": "macOS",
"os_version": "11.5.2"
},
"stats": {
"data": [
"0.004986",
"0.001076",
"0.001132",
"0.001086",
"0.001221",
"0.001143",
"0.001074",
"0.001057",
"0.000990",
"0.001032"
],
"iqr": "0.000079",
"iterations": 10,
"max": "0.004986",
"mean": "0.001480",
"median": "0.001081",
"min": "0.000990",
"q1": "0.001061",
"q3": "0.001140",
"stdev": "0.001234",
"time_unit": "s",
"times": [],
"unit": "s"
},
"tags": {
"compression": "lz4",
"cpu_count": null,
"dataset": "nyctaxi_sample",
"file_type": "feather",
"name": "file-read",
"output_type": "dataframe"
}
}
There are three main types of benchmarks: "simple benchmarks" that time the execution of a unit of work, "external benchmarks" that just record benchmark results that were obtained from some other benchmarking tool, and "case benchmarks" which benchmark a unit of work under different scenarios.
Included in this repository are contrived, minimal examples of these different kinds of benchmarks to be used as templates for benchmark authoring. These example benchmarks and their tests can be found here:
A "simple benchmark" runs and records the execution time of a unit of work.
Implementation details: Note that this benchmark extends
benchmarks._benchmark.Benchmark
, implements the minimum required run()
method, and registers itself with the @conbenchlegacy.runner.register_benchmark
decorator.
@conbenchlegacy.runner.register_benchmark
class SimpleBenchmark(_benchmark.Benchmark):
"""Example benchmark without cases."""
name = "example-simple"
def run(self, **kwargs):
tags = self.get_tags(kwargs)
f = self._get_benchmark_function()
yield self.benchmark(f, tags, kwargs)
def _get_benchmark_function(self):
return lambda: 1 + 1
(qa) $ conbench example-simple --help
Usage: conbench example-simple [OPTIONS]
Run example-simple benchmark.
Options:
--cpu-count INTEGER
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Name of run (commit, pull request, etc).
--help Show this message and exit.
More simple benchmark examples that have minimal scaffolding:
An "external benchmark" records results that were obtained from some other benchmarking tool (like executing the Arrow C++ micro benchmarks from command line, parsing the resulting JSON, and recording those results).
Implementation details: Note that the following benchmark sets
external = True
, and calls record()
rather than benchmark()
as the
example above does.
@conbenchlegacy.runner.register_benchmark
class ExternalBenchmark(_benchmark.Benchmark):
"""Example benchmark that just records external results."""
external = True
name = "example-external"
def run(self, **kwargs):
# external results from somewhere
# (an API call, command line execution, etc)
result = {
"data": [100, 200, 300],
"unit": "i/s",
"times": [0.100, 0.200, 0.300],
"time_unit": "s",
}
tags = self.get_tags(kwargs)
info, context = {}, {"benchmark_language": "C++"}
yield self.record(
result,
tags,
info,
context,
options=kwargs,
output=result["data"],
)
(qa) $ conbench example-external --help
Usage: conbench example-external [OPTIONS]
Run example-external benchmark.
Options:
--cpu-count INTEGER
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Name of run (commit, pull request, etc).
--help Show this message and exit.
And here's another external benchmark, one that runs an external R benchmark.
Implementation details: Note that the following benchmark extends BenchmarkR
,
sets both external
and r_only
to True
, defines r_name
, implements
_get_r_command()
, and calls r_benchmark()
rather than benchmark()
or
record()
.
@conbenchlegacy.runner.register_benchmark
class WithoutPythonBenchmark(_benchmark.BenchmarkR):
"""Example R benchmark that doesn't have a Python equivalent."""
external, r_only = True, True
name, r_name = "example-R-only", "placebo"
def run(self, **kwargs):
tags = self.get_tags(kwargs)
command = self._get_r_command(kwargs)
yield self.r_benchmark(command, tags, kwargs)
def _get_r_command(self, options):
return (
f"library(arrowbench); "
f"run_one(arrowbench:::{self.r_name}, "
f"cpu_count={self.r_cpu_count(options)})"
)
(qa) $ conbench example-R-only --help
Usage: conbench example-R-only [OPTIONS]
Run example-R-only benchmark.
Options:
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--cpu-count INTEGER
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Name of run (commit, pull request, etc).
--help Show this message and exit.
More external benchmark examples that record C++, Java, and R benchmark results:
- cpp_micro_benchmarks.py
- dataframe_to_table_benchmark.py
- file_benchmark.py
- java_micro_benchmarks.py
- partitioned_dataset_filter_benchmark.py
A "case benchmark" is a either a "simple benchmark" or an "external benchmark" executed under various predefined scenarios (cases).
Implementation details: Note that the following benchmark declares the valid
combinations in valid_cases
, which reads like a CSV (the first row contains
the cases names).
@conbenchlegacy.runner.register_benchmark
class CasesBenchmark(_benchmark.Benchmark):
"""Example benchmark with cases."""
name = "example-cases"
valid_cases = (
("rows", "columns"),
("10", "10"),
("2", "10"),
("10", "2"),
)
def run(self, case=None, **kwargs):
tags = self.get_tags(kwargs)
for case in self.get_cases(case, kwargs):
rows, columns = case
f = self._get_benchmark_function(rows, columns)
yield self.benchmark(f, tags, kwargs, case)
def _get_benchmark_function(self, rows, columns):
return lambda: int(rows) * [int(columns) * [0]]
(qa) $ conbench example-cases --help
Usage: conbench example-cases [OPTIONS]
Run example-cases benchmark(s).
For each benchmark option, the first option value is the default.
Valid benchmark combinations:
--rows=10 --columns=10
--rows=2 --columns=10
--rows=10 --columns=2
To run all combinations:
$ conbench example-cases --all=true
Options:
--rows [10|2]
--columns [10|2]
--all BOOLEAN [default: false]
--cpu-count INTEGER
--iterations INTEGER [default: 1]
--drop-caches BOOLEAN [default: false]
--gc-collect BOOLEAN [default: true]
--gc-disable BOOLEAN [default: true]
--show-result BOOLEAN [default: true]
--show-output BOOLEAN [default: false]
--run-id TEXT Group executions together with a run id.
--run-name TEXT Name of run (commit, pull request, etc).
--help Show this message and exit.
More case benchmark examples: