Write fluent functional programming idioms in Python.
- Chain operations like
map
,reduce
,filter_map
- Lazy evaluation
Readable transformation functions, as opposed to Lisp-ish prefix notation-esque map filter functions.
- Installation
- Quick start
- How it works
- Motivation
- Design
- How is it different?
- Who is this for (and not for)?
- Design
- Examples
pip install git+/~https://github.com/remykarem/pyterator.git#egg=pyterator
>>> from pyterate import iterate
>>> text = ["hello", "world"]
>>> iterate(text).map(str.upper).to_list()
['HELLO', 'WORLD']
Chain operations
>>> text = ["hello", "my", "love"]
>>> (
... iterate(text)
... .filterfalse(lambda x: x in ["a", "my"])
... .map(str.upper)
... .map(lambda x: x+"!")
... .to_list()
... )
['HELLO!', 'LOVE!']
Using map
, reduce
in Python forces you to write in prefix notation-esque which makes it hard to read.
For a transformation pipeline:
[1, 2, 3, 4] -> [2, 3, 4, 5] -> [3, 5] -> 15
Python:
reduce(lambda x,y: x * y,
filter(lambda x: x % 2,
map(lambda x: x+1, [1, 2, 3, 4])), 1)
which looks similar to Common Lisp
(reduce #'*
(remove-if #'evenp
(mapcar (lambda (x) (1+ x)) '(1 2 3 4))))
and Haskell
foldl (*) 1
(filter odd
(map (\x -> x+1) [1, 2, 3, 4]))
which are languages where prefix notation is their natural syntax.
List comprehensions, while idiomatic and commonplace among developers, can be hard to read at times.
This design is largely influenced by modern languages that implement functional programming idioms like Rust, Kotlin, Scala and JavaScript. The Apache Spark framework, which is written in Scala, largely exposes functional programming idioms in the Python APIs.
We want the subject of the chain of transformations to be the data itself, then call the operations in succession:
(
[1,2,3,4]
.map(...)
.filter(...)
.reduce(...)
)
and
(
iter([1,2,3,4])
.map(...)
.filter(...)
.reduce(...)
)
Since Python's iterator does not have methods map
, reduce
, we implemented our own iterate
, which is similar to Python's builtin iter
, so that client code can easily switch it out.
(
iterate([1,2,3,4])
.map(...)
.filter(...)
.reduce(...)
)
iterator,
It is also a builder function, which returns a _Pyterator
instance that implements __next__
.
Lazy. Reduce operations and to_list() operations will 'materialise' your transformations.
[1, 2, 3, 4] -> [1, 4, 9, 16]
>>> from pyterator import iterate
>>> nums = [1, 2, 3, 4]
Pyterator
>>> iterate(nums).map(lambda x: x**2).to_list()
List comprehension
>>> [x**2 for x in nums]
Map reduce
>>> list(map(lambda x: x**2, iter(nums)))
Pyterator
>>> iterate(nums).filter(lambda x: x > 3).to_list()
List comprehension
>>> [x for x in nums if x > 3]
[
"peter piper",
"picked a peck", ->
"of pickled pepper",
]
List comprehension
>>> [word for text in texts for word in text.split()]
Pyterator
>>> iterate(texts).flat_map(str.split).to_list()
>>> from pyterator import iterate
>>> stopwords = {"of", "a"}
>>> texts = [
"peter piper Picked a peck ",
"of Pickled pePper",
"\na peck of pickled pepper peter piper picked",
]
List comprehension
>>> words = [
word for text in texts
for word in text.lower().strip().split()
if word not in stopwords]
>>> set(words)
{'peck', 'pepper', 'peter', 'picked', 'pickled', 'piper'}
Pyterator
>>> (
... iterate(texts)
... .map(str.strip)
... .map(str.lower)
... .flat_map(str.split)
... .filter(lambda word: word not in stopwords)
... .to_set()
... )
{'peck', 'pepper', 'peter', 'picked', 'pickled', 'piper'}
https://doc.rust-lang.org/std/iter/trait.Iterator.html
These gotchas pertain to mutability of the collections
Vectorised operations - use NumPy or other equivalent
common
map
enumerate
filter
for_each
filterfalse
filter_map
starmap
starfilter
star_map_filter
order
reverse
dimension change
partition
flat_map
star_flat_map
chunked
flatten
zip
chain
positional
skip
first
nth
take
collect
to_list
to_set
to_dict
groupby
reduce
reduce
all
any
min
max
sum
prod
join
sample
Note that these libraries focus on fluent method chaining.