Skip to content

Pyterator helps you write fluent interfaces for collections

Notifications You must be signed in to change notification settings

remykarem/pyterator

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pyterator

Write fluent functional programming idioms in Python.

  • Chain operations like map, reduce, filter_map
  • Lazy evaluation

Readable transformation functions, as opposed to Lisp-ish prefix notation-esque map filter functions.


Contents

Installation

pip install git+/~https://github.com/remykarem/pyterator.git#egg=pyterator

Quick start

>>> from pyterate import iterate
>>> text = ["hello", "world"]
>>> iterate(text).map(str.upper).to_list()
['HELLO', 'WORLD']

Chain operations

>>> text = ["hello", "my", "love"]
>>> (
...     iterate(text)
...     .filterfalse(lambda x: x in ["a", "my"])
...     .map(str.upper)
...     .map(lambda x: x+"!")
...     .to_list()
... )
['HELLO!', 'LOVE!']

Motivation

Using map, reduce in Python forces you to write in prefix notation-esque which makes it hard to read.

For a transformation pipeline:

[1, 2, 3, 4] -> [2, 3, 4, 5] -> [3, 5] -> 15

Python:

reduce(lambda x,y: x * y,
    filter(lambda x: x % 2,
        map(lambda x: x+1, [1, 2, 3, 4])), 1)

which looks similar to Common Lisp

(reduce #'*
    (remove-if #'evenp
        (mapcar (lambda (x) (1+ x)) '(1 2 3 4))))

and Haskell

foldl (*) 1 
    (filter odd 
        (map (\x -> x+1) [1, 2, 3, 4]))

which are languages where prefix notation is their natural syntax.

List comprehensions, while idiomatic and commonplace among developers, can be hard to read at times.

Design

This design is largely influenced by modern languages that implement functional programming idioms like Rust, Kotlin, Scala and JavaScript. The Apache Spark framework, which is written in Scala, largely exposes functional programming idioms in the Python APIs.

We want the subject of the chain of transformations to be the data itself, then call the operations in succession:

(
    [1,2,3,4]
    .map(...)
    .filter(...)
    .reduce(...)
)

and

(
    iter([1,2,3,4])
    .map(...)
    .filter(...)
    .reduce(...)
)

Since Python's iterator does not have methods map, reduce, we implemented our own iterate, which is similar to Python's builtin iter, so that client code can easily switch it out.

(
    iterate([1,2,3,4])
    .map(...)
    .filter(...)
    .reduce(...)
)

iterator,

It is also a builder function, which returns a _Pyterator instance that implements __next__.

How it works

Lazy. Reduce operations and to_list() operations will 'materialise' your transformations.

Examples

Example 1: Square

[1, 2, 3, 4] -> [1, 4, 9, 16]
>>> from pyterator import iterate
>>> nums = [1, 2, 3, 4]

Pyterator

>>> iterate(nums).map(lambda x: x**2).to_list()

List comprehension

>>> [x**2 for x in nums]

Map reduce

>>> list(map(lambda x: x**2, iter(nums)))

Example 2: Filter

Pyterator

>>> iterate(nums).filter(lambda x: x > 3).to_list()

List comprehension

>>> [x for x in nums if x > 3]

Flat map

[
"peter piper",
"picked a peck",     ->
"of pickled pepper",
]

List comprehension

>>> [word for text in texts for word in text.split()]

Pyterator

>>> iterate(texts).flat_map(str.split).to_list()

Multiple transformations

>>> from pyterator import iterate
>>> stopwords = {"of", "a"}
>>> texts = [
    "peter piper Picked a peck  ",
    "of Pickled pePper",
    "\na peck of pickled pepper peter piper picked",
]

List comprehension

>>> words = [
        word for text in texts
        for word in text.lower().strip().split()
        if word not in stopwords]
>>> set(words)
{'peck', 'pepper', 'peter', 'picked', 'pickled', 'piper'}

Pyterator

>>> (
...     iterate(texts)
...     .map(str.strip)
...     .map(str.lower)
...     .flat_map(str.split)
...     .filter(lambda word: word not in stopwords)
...     .to_set()
... )
{'peck', 'pepper', 'peter', 'picked', 'pickled', 'piper'}

Inspired by

https://doc.rust-lang.org/std/iter/trait.Iterator.html

Gotchas

These gotchas pertain to mutability of the collections

What this is not for

Vectorised operations - use NumPy or other equivalent

API

common

  • map
  • enumerate
  • filter
  • for_each
  • filterfalse
  • filter_map
  • starmap
  • starfilter
  • star_map_filter

order

  • reverse

dimension change

  • partition
  • flat_map
  • star_flat_map
  • chunked
  • flatten
  • zip
  • chain

positional

  • skip
  • first
  • nth
  • take

collect

  • to_list
  • to_set
  • to_dict
  • groupby

reduce

  • reduce
  • all
  • any
  • min
  • max
  • sum
  • prod
  • join
  • sample

Similar libraries

Note that these libraries focus on fluent method chaining.

About

Pyterator helps you write fluent interfaces for collections

Topics

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages