Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add image classification models #52

Merged
merged 8 commits into from
Jun 15, 2017
Merged

Conversation

wwhu
Copy link
Contributor

@wwhu wwhu commented May 24, 2017

resolve #28
The classification accuracy has not been validated yet.

@wwhu wwhu requested a review from qingqing01 May 24, 2017 09:51
Copy link
Collaborator

@qingqing01 qingqing01 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

还需要使用文档,可以参考其他models里的文档,但模型介绍部分觉得不用详细讲了,都是比较经典的模型,book里都有介绍,可以指向链接指向book。


def inception(name, input, channels, filter1, filter3R, filter3, filter5R,
filter5, proj):
cov1 = paddle.layer.conv_projection(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里采用这个配置里inception2 的写法吧,/~https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/paddle/image/googlenet.py#L19

conv_projection不适应CPU.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已添加inception2

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

直接去掉inception, 只保留inception2吧~

res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
res2 = layer_warp(block_func, res1, 128, stages[1], 2)
res3 = layer_warp(block_func, res2, 256, stages[2], 2)
res4 = layer_warp(block_func, res3, 512, stages[3], 2)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

对于上面 " # TODO: bug fix for ch_in = input.num_filters ",一种办法是这里layer_warp这里可以显示的指定通道数。 当然也可以等配置解析重写之后,看能不能获取layer的属性,再改也行~~

Copy link
Contributor Author

@wwhu wwhu Jun 1, 2017

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

输入通道数的用处是判断是否需要在block之间进行projection,我这里直接通过b_projection参数显式指定是否需要projection

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

明白了,这样也可以,那上面的 TODO 可以删掉了吧~

learning_rate_decay_a=0.1,
learning_rate_decay_b=128000 * 35,
learning_rate_schedule="discexp", )

train_reader = paddle.batch(
paddle.reader.shuffle(reader.test_reader("train.list"), buf_size=1000),
paddle.reader.shuffle(
reader.test_reader(os.path.join(args.data_dir, 'train.list')),
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

等haoshuang的PR合入之后,需要换成flowers的数据,用加速的reader。 同时文档里,可以告诉用户如果换成自己的数据集如何处理~

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已在文档里说明如何表示数据

loss2 = paddle.layer.cross_entropy_cost(
input=out2, label=lbl, coeff=0.3)
paddle.evaluator.classification_error(input=out2, label=lbl)
extra_layers = [loss1, loss2]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

要么把net, cost这些代码都放到各自的配置里去?这样train.py看着清爽一些~

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

把net放到各自配置里了,因为考虑到infer阶段不需要cost,所以cost还是放到了train.py


def inception(name, input, channels, filter1, filter3R, filter3, filter5R,
filter5, proj):
cov1 = paddle.layer.conv_projection(
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

直接去掉inception, 只保留inception2吧~

BATCH_SIZE),
learning_rate=0.001 / BATCH_SIZE,
learning_rate_decay_a=0.1,
learning_rate_decay_b=128000 * 35,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

learning_rate_decay_a, learning_rate_decay_b解释下吧,参见book里的解释~

res1 = layer_warp(block_func, pool1, 64, stages[0], 1)
res2 = layer_warp(block_func, res1, 128, stages[1], 2)
res3 = layer_warp(block_func, res2, 256, stages[2], 2)
res4 = layer_warp(block_func, res3, 512, stages[3], 2)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

明白了,这样也可以,那上面的 TODO 可以删掉了吧~

@wwhu
Copy link
Contributor Author

wwhu commented Jun 2, 2017

@qingqing01 这几处已修改

Copy link
Collaborator

@qingqing01 qingqing01 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

再加个infer.py吧。



def layer_warp(block_func, input, features, count, stride):
conv = block_func(input, features, stride, True)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

第一个block_func的b_projection不是总为True的,还是的依赖于输入conv的channel数。 所以我觉得还是shortcut里对判断输入和输出的channel数是否一致,决定是否用conv做升降维度好些~

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改

@qingqing01
Copy link
Collaborator

flowers dataset已经merge了,需要换下~

@guoshengCS
Copy link
Collaborator

能否稍微调整下basicblockbottleneckshortcut的顺序,将shortcut放在前面,保证拓扑顺序与原文尽可能一致,thx~

@wwhu
Copy link
Contributor Author

wwhu commented Jun 13, 2017

添加了infer.py以及flowers数据,并调整了shortcut位置。
@qingqing01 @guoshengCS

# image in RGB mode. It must swap the channel order.
im = im[(2, 1, 0), :, :] # BGR
im = im.flatten()
im = im / 255.0
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里看下image.py里有没有函数可以直接用。而且这里 im/255.0和训练不对应吧,训练是减去均值吧。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

已修改

__all__ = ['googlenet']


def inception2(name, input, channels, filter1, filter3R, filter3, filter5R,
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

inception2 -> inception

@@ -17,7 +17,7 @@
__all__ = ['vgg13', 'vgg16', 'vgg19']


def vgg(input, nums):
def vgg(input, nums, class_dim=100):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

class_dim=100 -> class_dim,去掉100的默认值吧

return conv


def resnet_imagenet(input, depth=50, class_dim=100):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

class_dim=100 -> class_dim, 去掉默认值100吧。

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

所有的默认值都去掉了

@lcy-seso
Copy link
Collaborator

If you are not going to finish this work. please tell me.

@wwhu
Copy link
Contributor Author

wwhu commented Jun 15, 2017

I will finish it ASAP. Sorry for the delay. @lcy-seso

@lcy-seso
Copy link
Collaborator

lcy-seso commented Jun 15, 2017

@wwhu You are welcome. I think after some modifications, we can try to merge the already finished part and then based on a merged version, refactor, refine, and validate the learning performance. Also, thanks for your work.

Copy link
Collaborator

@qingqing01 qingqing01 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

LGTM. 精度需要进一步确保~

@lcy-seso lcy-seso merged commit 8e80e20 into PaddlePaddle:develop Jun 15, 2017
@wwhu wwhu deleted the in-dev branch June 15, 2017 08:15
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

Example configuration for image classification.
4 participants