輪読会で読んだ文献[1] の p.33--36「単体表による単体法」を実装した.
- Python: 3.10.2
- numpy: 1.22.2
$ git clone ...
$ cd simplex-method-py/src/
$ python3 main.py < in/feasible-konno.in
tableau:
[[0. 1. 3. 2. 4. 0. 0. 0.]
[4. 0. 1. 1. 2. 1. 0. 0.]
[5. 0. 2. 0. 2. 0. 1. 0.]
[7. 0. 2. 1. 3. 0. 0. 1.]]
pivot (row, col)=(2, 2), pivot=2.0
[[-7.5 1. 0. 2. 1. 0. -1.5 0. ]
[ 1.5 0. 0. 1. 1. 1. -0.5 0. ]
[ 2.5 0. 1. 0. 1. 0. 0.5 0. ]
[ 2. 0. 0. 1. 1. 0. -1. 1. ]]
pivot (row, col)=(1, 3), pivot=1.0
[[-10.5 1. 0. 0. -1. -2. -0.5 0. ]
[ 1.5 0. 0. 1. 1. 1. -0.5 0. ]
[ 2.5 0. 1. 0. 1. 0. 0.5 0. ]
[ 0.5 0. 0. 0. 0. -1. -0.5 1. ]]
最適解に到達しました.
tableau:
[[-10.5 1. 0. 0. -1. -2. -0.5 0. ]
[ 1.5 0. 0. 1. 1. 1. -0.5 0. ]
[ 2.5 0. 1. 0. 1. 0. 0.5 0. ]
[ 0.5 0. 0. 0. 0. -1. -0.5 1. ]]
最適値 z = 21/2
最適解 x = {'x(1)': '5/2', 'x(2)': '3/2', 'x(6)': '1/2', 'x(3)': 0, 'x(4)': 0, 'x(5)': 0}
status=<Status.OPTIMAL: 'optimal'>
max型の等式標準形を想定する.
m
-z_0, -z, x_1 , ..., x_n , ..., x_(n+m)
b_1, -z, a_11, ..., a_1n, ..., a_1(n+m)
...
b_m, -z, a_m1, ..., a_mn, ..., a_m(n+m)
実際は,-z_0や-zは固定なので,係数部分だけを埋めればよい
m
0 , -1, x_1 , ...
b_1, 0 , a_11, ...
...
b_1, 0 , a_m1, ...
- 今野浩. 線形計画法. 日科技連. 1987.
- 梅谷俊治. しっかり学ぶ数理最適化: モデルからアルゴリズムまで. 講談社. 2020.
- Shun-Chen Niu. Introduction to Operations Research. The University of Texas at Dallas. https://personal.utdallas.edu/~scniu/OPRE-6201/OPRE-6201_Course-Content.html. 2024/05閲覧.