This is a collection of tools to monitor deleted tweets, automate screenshoting, and archiving.
streaming.py
andDB modules
work together to grab a real-time streamed timeline from Twitter and save all the results in a database, we currently supportSQLITE, MySQL and python networkx
but you can easily implement your own driver- All the tweets in the database are then screenshot by
screenshot.py
- Finally, the
monitoring.py
worker crawls through the database and checks if the tweets have been deleted. - I included
get_user_ids.py
, as the Twitter API often requires the ID, and not the screen name (eg not "@basilesimon").
git clone
this repowget https://raw.githubusercontent.com/pypa/pip/master/contrib/get-pip.py
thensudo python get-pip.py
- pip install -r requirements.txt
there is a nifty tool that will generate a config file in the default location (~/.config/twitter-tools/config.json
), just run python3 ./setup.py
and you'll be prompted.
we'll pick up the first entry, not that we'll look for ./config.json
and
../config.json
too, of course you can specify any file with the command
line.
it should look like this:
[
{
"consumer_key" : "XXXXXXXXXXXXXXXXXXXXXXXXX",
"consumer_secret" : "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"access_token": "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX",
"access_token_secret" : "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"
},
{
"consumer_key" : "YYYYYYYYYYYYYYYYYYYYYYYYY",
"consumer_secret" : "YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY",
"access_token": "YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY",
"access_token_secret" : "YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY"
},
{
"consumer_key" : "ZZZZZZZZZZZZZZZZZZZZZZZZZ",
"consumer_secret" : "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ",
"access_token": "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ",
"access_token_secret" : "ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ"
}
]
-
pip install MySQL-python
(but you might need toapt-get install build-essential python-dev libmysqlclient-dev
. I read it's easy to install on Max OS, with Homebrew) -
apt-get install mysql-server
-
apt-get install nodejs-legacy nodejs npm
-
sudo apt-get install build-essential chrpath git-core libssl-dev libfontconfig1-dev libxft-dev
-
sudo npm -g install phantomjs
I use the wonderful t from sferik, a command line tool for twitter shenanigans. Usually, I have an account following all the people I want to track - but it also works with lists.
$ t followings [account] > list.csv
python get_user_ids.py > ids.csv
Then to run it:
- Run
streaming.py
. Constantly. If it doesn't run, you're not saving the tweets. - Run
nosetests screenshot.py --with-save-baseline --nocapture
periodically to grab the screenshots. - Run
monitoring.py
periodically to check for deleted tweets.
You might want to consider running all these with cron
on a server. Just saying.
wget https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-1.3.4.tar.gz
tar -xvf elasticsearch-1.3.4.tar.gz
sudo apt-get install default-jre default-jdk
to install Java- Start ES instance with
bin/elasticsearch
in the directory where you extracted ElasticSearch
Then uncomment line 2 and 34-40 in save_to_db.py
You can use the block.py
tool to block users massively.
the -f
flag allows to pass a CSV file
when looking for bots you may want to look for a LOT of similar usernames, we got you covered !
first you'll need to generate a list of usernames, you can do so with any password dict tool, we recomend you use /~https://github.com/LandGrey/pydictor
and then pass it to ./get_user_ids.py -f
that will spit out a TSV of valid usernames and id
pairs, it's all cached so you can run it multiple times.
example:
$ python3 pydictor.py --head alejandro --len 4 4 -base d -o usernames.csv
_ _ _
_ __ _ _ __| (_) ___| |_ ___ _ __
| '_ \| | | |/ _` | |/ __| __/ _ \| '__|
| |_) | |_| | (_| | | (__| || (_) | |
| .__/ \__, |\__,_|_|\___|\__\___/|_|
|_| |___/ 2.1.4.1#dev
[+] A total of :10000 lines
[+] Store in :./results/blah.txt
[+] Cost :0.0529 seconds
$ python3 get_user_ids.py -f results/usernames.csv > valid_usernames.tsv