CNV-PD runs on python3 environment
sklearn
matplotlib
pysam
pandas
numpy
pytorch
torchvision
Usage: Get_Pileup_Image.py [-h] [-b bed] [-bas bas_file] [-bs bin_size]
[-k step_size] [-o outdir]
BamFileName
positional arguments:
BamFileName Bamfile to be used here
optional arguments:
-h, --help show this help message and exit
-b bed, --bed bed path to a .bed file with locations of CNVs. The second
column should be CNV start, and the third column
should be CNV end (default: None)
-bas bas_file, --bas_file bas_file
path to a .bas file (default: None)
-bs bin_size, --bin-size bin_size
the bin size that each bin will represent, in bases
(default: 100)
-k step_size, --step-size step_size
the step-size for taking sliding windows to create
bins (default: 50)
-o outdir, --output outdir
the directory into which output files will go
(default: .)
for example:
python src/Get_Pileup_Image.py -b tests/test.bed -bas tests/test.bas -o ./ tests/test.bam
tra=train.txt # train-data for mode training
tes=test.txt # test-data for check the accuracy of mode
cla=2 # 2-calss
outdir=./mode # directory for output mode
python src/pytorch_CNN_Train.py $tra $tes $cla $outdir
testtxt=./test.class.txt # the candidate CNVs you wanted to predicted
title='test_out' # prefix of output
class_num=2 # number of class
CNN=./CNN.2.model.pkl # the generated model you trained
outdir=./ # directory for output file
python src/pytorch_CNN_Pre.py $testtxt $title $class_num $CNN $outdir