Skip to content

Commit

Permalink
Fix NaN value comparisons in relu, max and min ops (apache#14262)
Browse files Browse the repository at this point in the history
* nan comparison

* fix relu grad
  • Loading branch information
anirudhacharya authored and vdantu committed Mar 31, 2019
1 parent ffb58f4 commit c1f3562
Show file tree
Hide file tree
Showing 2 changed files with 67 additions and 10 deletions.
48 changes: 38 additions & 10 deletions src/operator/mshadow_op.h
Original file line number Diff line number Diff line change
Expand Up @@ -127,10 +127,6 @@ MXNET_UNARY_MATH_OP(softsign, a / (1.0f + math::fabs(a)));

MXNET_UNARY_MATH_OP(softsign_grad, 1.0f / math::sqr(1.0f + math::fabs(a)));

MXNET_UNARY_MATH_OP_NC(relu, a > DType(0) ? a : DType(0));

MXNET_UNARY_MATH_OP_NC(relu_grad, a > DType(0) ? DType(1) : DType(0));

MXNET_UNARY_MATH_OP_NC(selu, DType(SELU_LAMBDA) *
(a > DType(0) ? a : DType(math::id(SELU_ALPHA) * math::expm1(a))));

Expand Down Expand Up @@ -317,12 +313,6 @@ MXNET_BINARY_MATH_OP(rpower, math::pow(b, a));

MXNET_BINARY_MATH_OP(rpower_grad, math::id(a) * math::log(b));

/*! \brief used for generate element of maximum */
MXNET_BINARY_MATH_OP(maximum, a > b ? a : b);

/*! \brief used for generate element of minimum */
MXNET_BINARY_MATH_OP_NC(minimum, a < b ? a : b);

MXNET_UNARY_MATH_OP_NC(nt, a != DType(0) ? DType(0) : DType(1));

MXNET_BINARY_MATH_OP_NC(ge, a >= b ? DType(1) : DType(0));
Expand Down Expand Up @@ -788,6 +778,44 @@ namespace isnan_typed {
}
}; // namespace isnan_typed

MXNET_UNARY_MATH_OP_NC(relu, isnan_typed::IsNan(a) || (a > DType(0)) ? a : DType(0));

/*! \brief used for computing gradient of relu operator */
struct relu_grad : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a) {
if (isnan_typed::IsNan(a)) {
return a;
} else {
return a > DType(0) ? DType(1) : DType(0);
}
}
};

/*! \brief used for computing binary operator maximum */
struct maximum : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
if (isnan_typed::IsNan(a)) {
return a;
} else {
return (a > b ? a : b);
}
}
};

/*! \brief used for computing binary operator minimum */
struct minimum : public mxnet_op::tunable {
template<typename DType>
MSHADOW_XINLINE static DType Map(DType a, DType b) {
if (isnan_typed::IsNan(a)) {
return a;
} else {
return DType(a < b ? a : b);
}
}
};

/*! \brief sum reducer that ignores NaN values in the input */
struct nansum {
/*! \brief do reduction into dst */
Expand Down
29 changes: 29 additions & 0 deletions tests/python/unittest/test_ndarray.py
Original file line number Diff line number Diff line change
Expand Up @@ -1550,6 +1550,35 @@ def test_ndarray_is_nan():
np.testing.assert_equal(output.asnumpy(), expected_output.astype(int))
# astype since numpy functions default return type is boolean array instead of int

@with_seed()
def test_ndarray_nan_comparison():
random_dimensions = np.random.randint(2, 5)
random_shape = [np.random.randint(2, 5) for i in range(random_dimensions)]
data1 = mxnet.test_utils.rand_ndarray(random_shape,'default')
data2 = mxnet.test_utils.rand_ndarray(random_shape,'default')
data1[1][0] = np.NaN
data2[0][0] = np.NaN

nd_max = mx.nd.maximum(data1, data2)
np_max = np.maximum(data1.asnumpy(), data2.asnumpy())
np.testing.assert_equal(nd_max.asnumpy(), np_max)

nd_min = mx.nd.minimum(data1, data2)
np_min = np.minimum(data1.asnumpy(), data2.asnumpy())
np.testing.assert_equal(nd_min.asnumpy(), np_min)

nd_relu = mx.nd.relu(data1)
np_relu = np.maximum(data1.asnumpy(), 0)
np.testing.assert_equal(nd_relu.asnumpy(), np_relu)

data1.attach_grad()
with mx.autograd.record():
y = mx.nd.relu(data1)
y.backward()
data1_grad = data1.grad.asnumpy()
for i in (np.isnan(data1_grad))[1][0].flatten():
assert i == True

if __name__ == '__main__':
import nose
nose.runmodule()

0 comments on commit c1f3562

Please sign in to comment.