/\
/ \ ## ## ## ####### ######
/ \ ## ## ## ## ## ## ##
/ \ ## ## ## ## ## ##
/________\ ## ## ## ## ## ##
/\ /\ ## ## ## ####### ##
/ \ / \ ## ## ## ## ## ##
/ \ / \ ## #### ## ## ##
/ \ / \ ########## ## ## ## ##########
/________\/________\
This library delivers tools to build surface reconstructions from point cloud data. Additionally, the found surfaces will be classified into predefined categories. The main aim of this project is to deliver fast and accurate algorithms for surface reconstruction with a strong focus on robotic applications such as autonomous navigation and localization in complex environments.
/~https://github.com/uos/lvr2 - develop
sudo apt-get install build-essential \
cmake cmake-curses-gui libflann-dev \
libgsl-dev libeigen3-dev libopenmpi-dev \
openmpi-bin opencl-c-headers ocl-icd-opencl-dev \
libvtk7-dev libvtk7-qt-dev libboost-all-dev \
freeglut3-dev libhdf5-dev qtbase5-dev \
qt5-default libqt5opengl5-dev liblz4-dev \
libopencv-dev libyaml-cpp-dev
A C++17 compiler is required.
If you want to compile with CUDA support install the latest version of the CUDA toolkit, which you can find on NVIDIAs CUDA download site. To enable CUDA support, you need to compile the software with a compatible GCC version. All compatibilities are listed in CMakeModules/max_cuda_gcc_version.cmake
.
mkdir build
cd build
cmake .. && make
Install the required libraries using Homebrew:
brew install boost boost-mpi cmake eigen flann gcc glew gsl hdf5 opencv lz4 qt vtk
mkdir build
cd build
cmake .. && make
You can experiment with the software using the the example dataset scan.pts
from the dat
folder. For a simple
reconstruction call in your build directory:
bin/lvr2_reconstruct ../dat/scan.pts
Output:
/\
/ \ ## ## ## ####### ######
/ \ ## ## ## ## ## ## ##
/ \ ## ## ## ## ## ##
/________\ ## ## ## ## ## ##
/\ /\ ## ## ## ####### ##
/ \ / \ ## ## ## ## ## ##
/ \ / \ ## #### ## ## ##
/ \ / \ ########## ## ## ## ##########
/________\/________\
##### Program options:
##### Transform input data : NO
##### Voxelsize : 10
##### Number of threads : 16
##### Point cloud manager : LVR2
##### Normal Estimation: : 0
##### Voxel decomposition: : PMC
##### Classifier: : GREY
##### Dump classification : NO
##### k_n : 10
##### k_i : 10
##### k_d : 5
##### Fill holes : NO
##### Remove DAs : NO
##### GPU normal estimation : OFF
[00:00:00 006] Autodetected the following attributes
[00:00:00 006] Color: 0
[00:00:00 006] Intensity: 1
[13:03:43:568][info ] [AdaptiveKSearchSurface] Dataset statistics:
[13:03:43:568][info ] [AdaptiveKSearchSurface] Num points: 289252
[13:03:43:568][info ] [AdaptiveKSearchSurface] kn, ki, kd: 10, 10, 5
[13:03:43:568][info ] [AdaptiveKSearchSurface] BB of points: [-851.281, -79.2388, 1.35899] - [1487.27, 327.931, 808.3]
[13:03:43:580][info ] [LVR2 Reconstruct] No flip point set, defaulting to (0,0,0)
[13:03:43:580][info ] [AdaptiveKSearchSurface] Initializing normal array...
[13:03:43:580][info ] [AdaptiveKSearchSurface] Estimating 289252 Surface Normals using 16 threads ...
[13:03:43:697][info ] [AdaptiveKSearchSurface] Interpolating 289252 Surface Normals using 16 threads ...
[13:03:43:741][info ] [AdaptiveKSearchSurface] Copying normals...
[13:03:43:743][info ] [LVR2 Reconstruct] Pointcloud loaded starting to reconstruct surfaces ...
[13:03:43:743][info ] [PointsetSurface] Creating grid
[13:03:43:868][info ] [LVR2 Reconstruct] Grid Cells: 30040
[13:03:43:915][info ] [LVR2 Reconstruct] Reconstructed mesh (vertices, faces): 20157, 36416)
[13:03:43:937][info ] [LVR2 Reconstruct] Saving mesh to triangle_mesh.ply.
[13:03:43:943][info ] [LVR2 Reconstruct] Saving mesh to triangle_mesh.obj.
[13:03:44:320][info ] [LVR2 Reconstruct] Program end.
in the root directory of the project. This will create a file called “triangle_mesh.ply” which can be displayed using a mesh viewer of your choice.
For all possible reconstruction parameters enter
bin/lvr2_reconstruct --help
Output:
Supported options:
-x [ --xPos ] arg (=0) Position of the x-coordinates in the
input point data (according to screen
coordinates).
-y [ --yPos ] arg (=1) Position of the y-coordinates in the
input data lines (according to screen
coordinates).
-z [ --zPos ] arg (=2) Position of the z-coordinates in the
input data lines (according to screen
coordinates).
--sx arg (=1) Scaling factor for the x coordinates.
--sy arg (=1) Scaling factor for the y coordinates.
--sz arg (=1) Scaling factor for the z coordinates.
--help Produce help message
--inputFile arg Input file name. Supported formats are
ASCII (.pts, .xyz), .ply and .h5
--inputSchema arg The ScanProjectSchema to use with the
input file. Options are HDF5, HDF5V2,
RAW, HYPERLIB, EUROC, RAWPLY, SLAM6D
--outputDirectory arg (=./) Directory where the output files are
placed
--outputFile arg (=triangle_mesh.ply triangle_mesh.obj )
Output file name. Supported formats are
ASCII (.pts, .xyz) and .ply
-v [ --voxelsize ] arg (=10) Voxelsize of grid used for
reconstruction.
--noExtrusion Do not extend grid. Can be used to
avoid artefacts in dense data sets but.
Disabling will possibly create
additional holes in sparse data sets.
-i [ --intersections ] arg (=-1) Number of intersections used for
reconstruction. If other than -1,
voxelsize will calculated
automatically.
-p [ --pcm ] arg (=LVR2) Point cloud manager used for point
handling and normal estimation. Choose
from {FLANN, STANN, PCL, NABO, LVR2,
LBVH_CUDA}.
--nem arg (=0) Method for estimating point normals /
planes. 0: PCA (default), 1: RANSAC, 2:
IPCA ilikebigbits, 3: IPCA exact. Make
sure the computing device is supporting
the respective method.
-d [ --decomposition ] arg (=PMC) Defines the type of decomposition that
is used for the voxels (Standard
Marching Cubes (MC), Planar Marching
Cubes (PMC), Standard Marching Cubes
with sharp feature detection (SF), Dual
Marching Cubes with an adaptive Octree
(DMC) or Tetraeder (MT) decomposition.
Choose from {MC, PMC, MT, SF}
-o [ --optimizePlanes ] Shift all triangle vertices of a
cluster onto their shared plane
-c [ --clusterPlanes ] Cluster planar regions based on normal
threshold, do not shift vertices into
regression plane.
--cleanContours arg (=0) Remove noise artifacts from contours.
Same values are between 2 and 4
--planeIterations arg (=3) Number of iterations for plane
optimization
-f [ --fillHoles ] arg (=0) Maximum size for hole filling
--rda arg (=0) Remove dangling artifacts, i.e. remove
the clusters with less than n triangles
--pnt arg (=0.850000024) (Plane Normal Threshold) Normal
threshold for plane optimization.
Default 0.85 equals about 3 degrees.
--smallRegionThreshold arg (=10) Threshold for small region removal. If
0 nothing will be deleted.
-w [ --writeClassificationResult ] Write classification results to file
'clusters.clu'
-e [ --exportPointNormals ] Exports original point cloud data
together with normals into a single
file called 'pointnormals.ply'
-g [ --saveGrid ] Writes the generated grid to a file
called 'fastgrid.grid. The result can
be rendered with qviewer.
-s [ --saveOriginalData ] Save the original points and the
estimated normals together with the
reconstruction into one file
('triangle_mesh.ply')
--scanPoseFile arg ASCII file containing scan positions
that can be used to flip normals
--kd arg (=5) Number of normals used for distance
function evaluation
--ki arg (=10) Number of normals used in the normal
interpolation process
--kn arg (=10) Size of k-neighborhood used for normal
estimation
--mp arg (=7) Minimum value for plane optimzation
-t [ --retesselate ] Retesselate regions that are in a
regression plane. Implies
--optimizePlanes.
--lft arg (=0.00999999978) (Line Fusion Threshold) Threshold for
fusing line segments while tesselating.
--generateTextures Generate textures during finalization.
--texMinClusterSize arg (=100) Minimum number of faces of a cluster to
create a texture from
--texMaxClusterSize arg (=0) Maximum number of faces of a cluster to
create a texture from (0 = no limit)
--textureAnalysis Enable texture analysis features for
texture matchung.
--texelSize arg (=1) Texel size that determines texture
resolution.
--classifier arg (=GREY) Classfier object used to color the
mesh. Possible values: GREY, SIMPSONS,
JET, HOT, HSV, SHSV, WHITE, BLACK
-r [ --recalcNormals ] Always estimate normals, even if given
in .ply file.
--threads arg (=16) Number of threads
--sft arg (=0.899999976) Sharp feature threshold when using
sharp feature decomposition
--sct arg (=0.699999988) Sharp corner threshold when using sharp
feature decomposition
--reductionRatio arg (=0) Percentage of faces to remove via
edge-collapse (0.0 means no reduction,
1.0 means to remove all faces which can
be removed)
--tp arg Path to texture pack
--co arg Coefficents file for texture matching
based on statistics
--nsc arg (=16) Number of colors for texture statistics
--nccv arg (=64) Number of colors for texture matching
based on color information
--ct arg (=50) Coherence threshold for texture
matching based on color information
--colt arg (=3.40282347e+38) Threshold for texture matching based on
colors
--stat arg (=3.40282347e+38) Threshold for texture matching based on
statistics
--feat arg (=3.40282347e+38) Threshold for texture matching based on
features
--cro Use texture matching based on cross
correlation.
--patt arg (=100) Threshold for pattern extraction from
textures
--mtv arg (=3) Minimum number of votes to consider a
texture transformation as correct
--vcfp Use color information from pointcloud
to paint vertices
--useGPU GPU normal estimation
--flipPoint arg Flippoint --flipPoint x y z
-q [ --texFromImages ] Foo Bar ............
--scanPositionIndex arg List of scan positions to load from a
scan project
--minSpectralChannel arg (=0) Minimum Spectral Channel Index for
Ranged Texture Generation
--maxSpectralChannel arg (=0) Maximum Spectral Channel Index for
Ranged Texture Generation
-a [ --projectDir ] arg Foo Bar ............
--transformScanPosition Transform the scan with the
scanpositions pose when using
--scanPositionIndex
--outputMeshName arg (=default) The name of the saved mesh
--inputMeshName arg The name of the mesh to load from the
file
--inputMeshFile arg The file to load the mesh from
--reduceScan arg (=0) Use Octree reduction algorithm with the
given gridsize when after loading the
scans
--reduceScanMinPoints arg (=1) The number of points an octree voxel
has to contain to be considered
occupied
For more information, build the Doxygen documentation by calling
make doc
in the build directory.
After successful compilation, you will find the generated example tools in the ./bin/ directory. Optionally, you can install the library and header files to your system:
sudo make install
After installation, you can include the lvr2 project in your own CMake project as follows:
find_package(LVR2 REQUIRED)
add_definitions(${LVR2_DEFINITIONS})
include_directories(${LVR2_INCLUDE_DIRS})
add_executable(my_own_exec my_own_code.cpp)
target_link_libraries(my_own_exec
${LVR2_LIBRARIES}
)
Please reference the following papers when using the lvr2 library in your scientific work.
@inproceedings{wiemann2018,
author={Wiemann, Thomas and Mitschke, Isaak and Mock, Alexander and Hertzberg, Joachim},
booktitle={2018 Second IEEE International Conference on Robotic Computing (IRC)},
title={{Surface Reconstruction from Arbitrarily Large Point Clouds}},
year={2018},
pages={278-281},
doi={10.1109/IRC.2018.00059}}
You can simply download this library and compile it inside your ROS workspace. The following ROS distributions are supported:
Version | Supported Distributions |
---|---|
ROS 1 | |
ROS 2 |