To install, use
python -m pip install git+/~https://github.com/umr-lops/dask-hpcconfig.git#egg=dask-hpcconfig
or clone the source:
git clone /~https://github.com/umr-lops/dask-hpcconfig.git
cd dask-hpcconfig
and then install from there:
python -m pip install .
or as "editable":
python -m pip install -e .
import dask_hpcconfig
To list the available cluster definitions:
dask_hpcconfig.print_clusters()
or, as a mapping of name to type:
clusters = dask_hpcconfig.available_clusters()
To create a cluster, use:
cluster = dask_hpcconfig.cluster(name)
where name
is the name of one of the available clusters.
To override any particular setting: For example on 'datarmor-local' to use only 7 workers for increasing memory size of each worker:
overrides = {"cluster.n_workers": 7}
cluster = dask_hpcconfig.cluster("datarmor-local", **overrides)
For example on 'datarmor' to use only 7 workers for increasing memory size of each worker, and use 49 workers (i.e. 7 mpi_1 nodes) :
overrides = {"cluster.cores": 7}
cluster = dask_hpcconfig.cluster("datarmor", **overrides)
cluster.scale(49)
cluster
can then be used to create a Client
:
from distributed import Client
client = Client(cluster)