Skip to content
/ pycit Public

(Conditional) Independence testing & Markov blanket feature selection using k-NN mutual information and conditional mutual information estimators. Supports continuous, discrete, and mixed data, as well as multiprocessing.

License

Notifications You must be signed in to change notification settings

syanga/pycit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

25 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

pycit

Framework for independence testing and conditional independence testing, with multiprocessing. Currently uses mutual information (MI) and conditional mutual information (CMI) as test statistics, estimated using k-NN methods. Also supports a routine for Markov blanket feature selection. Reports permutation-based p-values.

Installation

pip install pycit

Available Test Statistic Estimators

Mutual Information Estimators

  • ksg_mi: k-NN estimator for continuous data
  • bi_ksg_mi: "bias-improved" k-NN estimator for continuous data
  • mixed_mi: k-NN estimator for discrete-continuous mixtures

Conditional Mutual Information Estimators

  • ksg_cmi: k-NN estimator for continuous data
  • bi_ksg_cmi: "bias-improved" k-NN estimator for continuous data
  • mixed_cmi: k-NN estimator for discrete-continuous mixtures

Note: Also includes a differential entropy estimator: kl_entropy.

Example Usage

Independence Testing

from pycit import itest

# Test whether or not x and y are independent
pval = itest(x, y, test_args={'statistic': 'ksg_mi', 'n_jobs': 2})
is_independent = (pval >= 1.- confidence_level)

Conditional Independence Testing

from pycit import citest

# Test whether or not x and y are conditionally independent given z
pval = citest(x, y, z, test_args={'statistic': 'ksg_mi', 'n_jobs': 2})
is_conditionally_independent = (pval >= 1.- confidence_level)

Markov Blanket Feature Selection

from pycit.markov_blanket import MarkovBlanket

# specify CI test configuration
cit_funcs = {
    'it_args': {
        'test_args': {
            'statistic': 'ksg_mi',
            'n_jobs': 2
        }
    },
    'cit_args': {
        'test_args': {
            'statistic': 'ksg_cmi',
            'n_jobs': 2
        }
    }
}

# find Markov blanket of Y. x_data contains data from predictor variables, X_1,...,X_m
mb = MarkovBlanket(x_data, y_data, cit_funcs)
markov_blanket = mb.find_markov_blanket()

Dependencies:

  • numpy
  • scipy
  • scikit-learn

References:

  • Kozachenko, L. and Leonenko, N. (1987). Sample estimate of the entropy of a random vector. Problemy Peredachi Informatsii, 23(2):9–16.
  • Kraskov, A., Stögbauer, H., and Grassberger, P. (2004). Estimating mutual information. Physical Review E, 69(6):066138.
  • Frenzel, S. and Pompe, B. (2007). Partial mutual information for coupling analysis of multivariate time series. Physical Review Letters, 99(20):204101.
  • Gao, W., Kannan, S., Oh, S., and Viswanath, P. (2017). Estimating mutual information for discrete-continuous mixtures. In NIPS'2017.
  • Gao, W., Oh, S., and Viswanath, P. (2018). Demystifying fixed k-nearest neighbor information estimators. IEEE Transactions on Information Theory, 64(8):5629–5661.
  • Runge, J. (2018). Conditional independence testing based on a nearest-neighbor estimator of conditional mutual information. In AISTATS'18.
  • Yang, A., Ghassami, A., Raginsky, M., Kiyavash, N., and Rosenbaum, E. (2020). Model-Augmented Estimation of Conditional Mutual Information for Feature Selection. In UAI'2020.

About

(Conditional) Independence testing & Markov blanket feature selection using k-NN mutual information and conditional mutual information estimators. Supports continuous, discrete, and mixed data, as well as multiprocessing.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages