Skip to content

Commit

Permalink
[MXNET-703] Update to TensorRT 5, ONNX IR 3. Fix inference bugs. (apa…
Browse files Browse the repository at this point in the history
…che#13310)

* [MXNET-703] Install CUDA 10 compatible cmake

This works around a CUDA 10 cmake issue documented here:
clab/dynet#1457

This fix is temporary; once an updated cmake package is published to Ubuntu's
package repo it may be reverted.

* [MXNET-703] Update to TensorRT 5 ONNX IR 3. Fix inference bugs.

* [MXNET-703] Describe onnx opsets and major version
  • Loading branch information
KellenSunderland authored and stephenrawls committed Feb 16, 2019
1 parent cb1582b commit 64d9269
Show file tree
Hide file tree
Showing 13 changed files with 180 additions and 98 deletions.
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -187,6 +187,7 @@ if(USE_TENSORRT)
include_directories(${ONNX_PATH})
include_directories(3rdparty/onnx-tensorrt/)
include_directories(3rdparty/)
include_directories(3rdparty/onnx-tensorrt/third_party/onnx/)
add_definitions(-DMXNET_USE_TENSORRT=1)
add_definitions(-DONNX_NAMESPACE=onnx)

Expand Down
2 changes: 1 addition & 1 deletion ci/docker/Dockerfile.build.ubuntu_gpu_tensorrt
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
#
# Dockerfile to run MXNet on Ubuntu 16.04 for CPU

FROM nvidia/cuda:9.0-cudnn7-devel
FROM nvidia/cuda:10.0-cudnn7-devel

WORKDIR /work/deps

Expand Down
4 changes: 2 additions & 2 deletions ci/docker/install/tensorrt.sh
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ pip3 install gluoncv==0.2.0
pushd .
cd ..
apt-get update
apt-get install -y automake libtool
apt-get install -y automake libtool zip
git clone --recursive -b 3.5.1.1 /~https://github.com/google/protobuf.git
cd protobuf
./autogen.sh
Expand All @@ -41,7 +41,7 @@ popd

# Install TensorRT
echo "TensorRT build enabled. Installing TensorRT."
wget -qO tensorrt.deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvinfer-runtime-trt-repo-ubuntu1604-4.0.1-ga-cuda9.0_1-1_amd64.deb
wget -qO tensorrt.deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu1604/x86_64/nvinfer-runtime-trt-repo-ubuntu1604-5.0.2-ga-cuda10.0_1-1_amd64.deb
dpkg -i tensorrt.deb
apt-get update
apt-get install -y --allow-downgrades libnvinfer-dev
Expand Down
19 changes: 12 additions & 7 deletions ci/docker/install/ubuntu_core.sh
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,10 @@

set -ex
apt-get update || true

# Avoid interactive package installers such as tzdata.
export DEBIAN_FRONTEND=noninteractive

apt-get install -y \
apt-transport-https \
build-essential \
Expand All @@ -41,10 +45,11 @@ apt-get install -y \
unzip \
wget


# Ubuntu 14.04
if [[ $(lsb_release -r | grep 14.04) ]]; then
apt-get install -y cmake3
else
apt-get install -y cmake
fi
# Note: we specify an exact cmake version to work around a cmake 3.10 CUDA 10 issue.
# Reference: /~https://github.com/clab/dynet/issues/1457
mkdir /opt/cmake && cd /opt/cmake
wget -nv https://cmake.org/files/v3.12/cmake-3.12.4-Linux-x86_64.sh
sh cmake-3.12.4-Linux-x86_64.sh --prefix=/opt/cmake --skip-license
ln -s /opt/cmake/bin/cmake /usr/local/bin/cmake
rm cmake-3.12.4-Linux-x86_64.sh
cmake --version
34 changes: 17 additions & 17 deletions ci/docker/runtime_functions.sh
Original file line number Diff line number Diff line change
Expand Up @@ -602,23 +602,23 @@ build_ubuntu_gpu_tensorrt() {
cp -L 3rdparty/onnx-tensorrt/build/libnvonnxparser_runtime.so.0 /work/mxnet/lib/
cp -L 3rdparty/onnx-tensorrt/build/libnvonnxparser.so.0 /work/mxnet/lib/

rm -rf build
make \
DEV=1 \
ENABLE_TESTCOVERAGE=1 \
USE_BLAS=openblas \
USE_CUDA=1 \
USE_CUDA_PATH=/usr/local/cuda \
USE_CUDNN=1 \
USE_OPENCV=0 \
USE_MKLDNN=0 \
USE_DIST_KVSTORE=0 \
USE_TENSORRT=1 \
USE_JEMALLOC=0 \
USE_GPERFTOOLS=0 \
ONNX_NAMESPACE=onnx \
CUDA_ARCH="-gencode arch=compute_70,code=compute_70" \
-j$(nproc)
cd /work/build
cmake -DUSE_CUDA=1 \
-DCMAKE_CXX_COMPILER_LAUNCHER=ccache \
-DCMAKE_C_COMPILER_LAUNCHER=ccache \
-DUSE_CUDNN=1 \
-DUSE_OPENCV=1 \
-DUSE_TENSORRT=1 \
-DUSE_OPENMP=0 \
-DUSE_MKLDNN=0 \
-DUSE_MKL_IF_AVAILABLE=OFF \
-DENABLE_TESTCOVERAGE=ON \
-DCUDA_ARCH_NAME=Manual \
-DCUDA_ARCH_BIN=$CI_CMAKE_CUDA_ARCH_BIN \
-G Ninja \
/work/mxnet

ninja -v
}

build_ubuntu_gpu_mkldnn() {
Expand Down
2 changes: 1 addition & 1 deletion ci/jenkins/Jenkins_steps.groovy
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ mx_cmake_lib = 'build/libmxnet.so, build/libmxnet.a, build/3rdparty/dmlc-core/li
mx_cmake_lib_debug = 'build/libmxnet.so, build/libmxnet.a, build/3rdparty/dmlc-core/libdmlc.a, build/tests/mxnet_unit_tests'
mx_cmake_mkldnn_lib = 'build/libmxnet.so, build/libmxnet.a, build/3rdparty/dmlc-core/libdmlc.a, build/tests/mxnet_unit_tests, build/3rdparty/openmp/runtime/src/libomp.so, build/3rdparty/mkldnn/src/libmkldnn.so.0'
mx_mkldnn_lib = 'lib/libmxnet.so, lib/libmxnet.a, lib/libiomp5.so, lib/libmkldnn.so.0, lib/libmklml_intel.so, 3rdparty/dmlc-core/libdmlc.a, 3rdparty/tvm/nnvm/lib/libnnvm.a'
mx_tensorrt_lib = 'lib/libmxnet.so, lib/libnvonnxparser_runtime.so.0, lib/libnvonnxparser.so.0, lib/libonnx_proto.so, lib/libonnx.so'
mx_tensorrt_lib = 'build/libmxnet.so, lib/libnvonnxparser_runtime.so.0, lib/libnvonnxparser.so.0, lib/libonnx_proto.so, lib/libonnx.so'
mx_lib_cpp_examples = 'lib/libmxnet.so, lib/libmxnet.a, 3rdparty/dmlc-core/libdmlc.a, 3rdparty/tvm/nnvm/lib/libnnvm.a, 3rdparty/ps-lite/build/libps.a, deps/lib/libprotobuf-lite.a, deps/lib/libzmq.a, build/cpp-package/example/*'
mx_lib_cpp_examples_cpu = 'build/libmxnet.so, build/cpp-package/example/*'

Expand Down
2 changes: 1 addition & 1 deletion src/executor/onnx_to_tensorrt.cc
Original file line number Diff line number Diff line change
Expand Up @@ -28,7 +28,7 @@

#include "./onnx_to_tensorrt.h"

#include <onnx/onnx.pb.h>
#include <onnx/onnx_pb.h>

#include <NvInfer.h>
#include <google/protobuf/io/coded_stream.h>
Expand Down
2 changes: 1 addition & 1 deletion src/executor/tensorrt_pass.cc
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@
#include <mxnet/op_attr_types.h>
#include <mxnet/operator.h>
#include <nnvm/graph_attr_types.h>
#include <onnx/onnx.pb.h>
#include <onnx/onnx_pb.h>

#include "../operator/contrib/nnvm_to_onnx-inl.h"
#include "./exec_pass.h"
Expand Down
2 changes: 1 addition & 1 deletion src/executor/trt_graph_executor.cc
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@

#include "trt_graph_executor.h"

#include <onnx/onnx.pb.h>
#include <onnx/onnx_pb.h>
#include <NvInfer.h>
#include "./onnx_to_tensorrt.h"
#include "../operator/contrib/tensorrt-inl.h"
Expand Down
2 changes: 1 addition & 1 deletion src/operator/contrib/nnvm_to_onnx-inl.h
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@
#include <nnvm/graph.h>
#include <nnvm/pass_functions.h>

#include <onnx/onnx.pb.h>
#include <onnx/onnx_pb.h>

#include <algorithm>
#include <iostream>
Expand Down
138 changes: 73 additions & 65 deletions src/operator/contrib/nnvm_to_onnx.cc
Original file line number Diff line number Diff line change
Expand Up @@ -62,15 +62,22 @@ namespace nnvm_to_onnx {
op::ONNXParam ConvertNnvmGraphToOnnx(
const nnvm::Graph& g,
std::unordered_map<std::string, NDArray>* const shared_buffer) {
op::ONNXParam onnx_param;
op::nnvm_to_onnx::NameToIdx_t onnx_input_map;
op::nnvm_to_onnx::InferenceMap_t onnx_output_map;

static std::atomic_ulong subgraph_count = { 0 };

op::ONNXParam onnx_param;
op::nnvm_to_onnx::NameToIdx_t onnx_input_map;
op::nnvm_to_onnx::InferenceMap_t onnx_output_map;

const nnvm::IndexedGraph& ig = g.indexed_graph();
const auto& storage_types = g.GetAttr<StorageTypeVector>("storage_type");
const auto& dtypes = g.GetAttr<DTypeVector>("dtype");
const auto& shape_inputs = g.GetAttr<ShapeVector>("shape_inputs");

// TODO(kellens): At the moment this check always passes no matter the weight dtypes used in your
// graph. We should first iterate over datatypes by name and ensure they're valid types
// (fp16 or fp32) and that they're uniform. Then ensure later conversions set tensor types
// correctly in ONNX.
for (auto& e : storage_types) {
if (e != mshadow::kFloat32) {
LOG(FATAL) << "ONNX converter does not support types other than float32 "
Expand All @@ -79,9 +86,23 @@ op::ONNXParam ConvertNnvmGraphToOnnx(
}

ModelProto model_proto;
// Need to determine IR versions and features to support
model_proto.set_ir_version(static_cast<int64>(2));

// We're currently serializing our models in ONNX 3, opset 8 as it is best supported by the
// currently linked version of the onnx-tensorrt library.
// More information on ONNX versions and opsets can be found at:
// /~https://github.com/onnx/onnx/blob/master/docs/IR.md

auto opset_proto = model_proto.add_opset_import();
const int64 onnx_opset = 8;
const int64 onnx_major_version = 3;

// Declare our ONNX versions in our protobuf model.
opset_proto->set_version(onnx_opset);
model_proto.set_ir_version(onnx_major_version);

GraphProto* graph_proto = model_proto.mutable_graph();
auto subgraph_name_id = subgraph_count.fetch_add(1);
graph_proto->set_name("MXNetTRTSubgraph" + std::to_string(subgraph_name_id));

std::unordered_map<std::string, TShape> placeholder_shapes =
GetPlaceholderShapes(shape_inputs, ig);
Expand Down Expand Up @@ -176,6 +197,20 @@ void ConvertConvolution(NodeProto* node_proto, const NodeAttrs& attrs,
// const bool no_bias = conv_param.no_bias;
const dmlc::optional<int> layout = conv_param.layout;

// dilations
AttributeProto* const dilations = node_proto->add_attribute();
dilations->set_name("dilations");
dilations->set_type(AttributeProto::INTS);
for (const dim_t kval : dilate) {
dilations->add_ints(static_cast<int64>(kval));
}

// group
AttributeProto* const group = node_proto->add_attribute();
group->set_name("group");
group->set_type(AttributeProto::INT);
group->set_i(static_cast<int64>(num_group));

// kernel shape
AttributeProto* const kernel_shape = node_proto->add_attribute();
kernel_shape->set_name("kernel_shape");
Expand All @@ -195,27 +230,13 @@ void ConvertConvolution(NodeProto* node_proto, const NodeAttrs& attrs,
pads->add_ints(static_cast<int64>(kval));
}

// dilations
AttributeProto* const dilations = node_proto->add_attribute();
dilations->set_name("dilations");
dilations->set_type(AttributeProto::INTS);
for (const dim_t kval : dilate) {
dilations->add_ints(static_cast<int64>(kval));
}

// strides
AttributeProto* const strides = node_proto->add_attribute();
strides->set_name("strides");
strides->set_type(AttributeProto::INTS);
for (const dim_t kval : stride) {
strides->add_ints(static_cast<int64>(kval));
}

// group
AttributeProto* const group = node_proto->add_attribute();
group->set_name("group");
group->set_type(AttributeProto::INT);
group->set_i(static_cast<int64>(num_group));
} // end ConvertConvolution

void ConvertPooling(NodeProto* node_proto, const NodeAttrs& attrs,
Expand Down Expand Up @@ -250,8 +271,12 @@ void ConvertPooling(NodeProto* node_proto, const NodeAttrs& attrs,
AttributeProto* const pads = node_proto->add_attribute();
pads->set_name("pads");
pads->set_type(AttributeProto::INTS);
for (int kval : pad) {
pads->add_ints(static_cast<int64>(kval));

// Convert from MXNet symetric pads to ONNX non-symetric by running through padding twice.
for (int i =0; i < 2; i++) {
for (dim_t kval : pad) {
pads->add_ints(static_cast<int64>(kval));
}
}

// strides
Expand Down Expand Up @@ -315,11 +340,6 @@ void ConvertFullyConnected(NodeProto* node_proto, const NodeAttrs& attrs,
beta->set_type(AttributeProto::FLOAT);
beta->set_f(1.0f);

AttributeProto* const broadcast = node_proto->add_attribute();
broadcast->set_name("broadcast");
broadcast->set_type(AttributeProto::INT);
broadcast->set_i(1);

AttributeProto* const transA = node_proto->add_attribute();
transA->set_name("transA");
transA->set_type(AttributeProto::INT);
Expand Down Expand Up @@ -371,11 +391,6 @@ void ConvertBatchNorm(NodeProto* node_proto, const NodeAttrs& attrs,
epsilon->set_type(AttributeProto::FLOAT);
epsilon->set_f(static_cast<float>(param.eps));

AttributeProto* const is_test = node_proto->add_attribute();
is_test->set_name("is_test");
is_test->set_type(AttributeProto::INT);
is_test->set_i(1);

AttributeProto* const momentum = node_proto->add_attribute();
momentum->set_name("momentum");
momentum->set_type(AttributeProto::FLOAT);
Expand All @@ -384,31 +399,16 @@ void ConvertBatchNorm(NodeProto* node_proto, const NodeAttrs& attrs,
AttributeProto* const spatial = node_proto->add_attribute();
spatial->set_name("spatial");
spatial->set_type(AttributeProto::INT);
spatial->set_i(1);

AttributeProto* const consumed = node_proto->add_attribute();
consumed->set_name("consumed_inputs");
consumed->set_type(AttributeProto::INTS);

for (int i = 0; i < 5; i++) {
int val = (i < 3) ? 0 : 1;
consumed->add_ints(static_cast<int64>(val));
}
// MXNet computes mean and variance per feature for batchnorm. Enabling spatial mode
// (default in ONNX3) implies running batchnorm on all spatial features so we need to explicitly
// disable this for MXNet's BatchNorm.
spatial->set_i(0);
}

void ConvertElementwiseAdd(NodeProto* node_proto, const NodeAttrs& /*attrs*/,
const nnvm::IndexedGraph& /*ig*/,
const array_view<IndexedGraph::NodeEntry>& /*inputs*/) {
node_proto->set_op_type("Add");
AttributeProto* const axis = node_proto->add_attribute();
axis->set_name("axis");
axis->set_type(AttributeProto::INT);
axis->set_i(1);

AttributeProto* const broadcast = node_proto->add_attribute();
broadcast->set_name("broadcast");
broadcast->set_type(AttributeProto::INT);
broadcast->set_i(0); // 1
}

std::unordered_map<std::string, TShape> GetPlaceholderShapes(
Expand Down Expand Up @@ -461,32 +461,40 @@ void ConvertPlaceholder(
void ConvertConstant(
GraphProto* const graph_proto, const std::string& node_name,
std::unordered_map<std::string, NDArray>* const shared_buffer) {
NodeProto* const node_proto = graph_proto->add_node();
node_proto->set_name(node_name);
node_proto->add_output(node_name);
node_proto->set_op_type("Constant");
TensorProto* const initializer_proto = graph_proto->add_initializer();

// Create initializer for constants
initializer_proto->set_name(node_name);
// TODO(kellens): convert to fp16 if needed.
initializer_proto->set_data_type(TensorProto_DataType_FLOAT);

const NDArray nd = shared_buffer->find(node_name)->second;
const TBlob& blob = nd.data();
const TShape shape = blob.shape_;
const int32_t size = shape.Size();

for (auto& dim : shape) {
initializer_proto->add_dims(static_cast<int64>(dim));
}

auto size = shape.Size();
// TODO(kellens): Note hard coded float32 size assumed.
std::shared_ptr<float> shared_data_ptr(new float[size]);
float* const data_ptr = shared_data_ptr.get();
nd.SyncCopyToCPU(static_cast<void*>(data_ptr), size);

AttributeProto* const tensor_attr = node_proto->add_attribute();
tensor_attr->set_name("value");
tensor_attr->set_type(AttributeProto::TENSOR);

TensorProto* const tensor_proto = tensor_attr->mutable_t();
tensor_proto->set_data_type(TensorProto_DataType_FLOAT);
for (auto& dim : shape) {
tensor_proto->add_dims(static_cast<int64>(dim));
for (size_t blob_idx = 0; blob_idx < size; ++blob_idx) {
initializer_proto->add_float_data(data_ptr[blob_idx]);
}

for (int blob_idx = 0; blob_idx < size; ++blob_idx) {
tensor_proto->add_float_data(data_ptr[blob_idx]);
// Create inputs for constants.
ValueInfoProto* const input_proto = graph_proto->add_input();
input_proto->set_name(node_name);

// TODO(kellens): (fp16 support)
input_proto->mutable_type()->mutable_tensor_type()->set_elem_type(TensorProto_DataType_FLOAT);
for (auto& dim : shape) {
auto new_dim = input_proto->mutable_type()->mutable_tensor_type()->mutable_shape()->add_dim();
new_dim->set_dim_value(static_cast<int64>(dim));
}
}

Expand Down
Loading

0 comments on commit 64d9269

Please sign in to comment.