Skip to content

Commit

Permalink
fix nightly test on tutorials (apache#14036)
Browse files Browse the repository at this point in the history
* fix nightly test

* fix typo

* trigger ci
  • Loading branch information
roywei authored and stephenrawls committed Feb 16, 2019
1 parent d3b43ac commit 546a23e
Show file tree
Hide file tree
Showing 5 changed files with 47 additions and 64 deletions.
4 changes: 2 additions & 2 deletions ci/docker/install/ubuntu_tutorials.sh
Original file line number Diff line number Diff line change
Expand Up @@ -23,5 +23,5 @@
set -ex
apt-get update || true
apt-get install graphviz python-opencv
pip2 install jupyter matplotlib Pillow opencv-python scikit-learn graphviz tqdm mxboard
pip3 install jupyter matplotlib Pillow opencv-python scikit-learn graphviz tqdm mxboard
pip2 install jupyter matplotlib Pillow opencv-python scikit-learn graphviz tqdm mxboard scipy
pip3 install jupyter matplotlib Pillow opencv-python scikit-learn graphviz tqdm mxboard scipy
8 changes: 4 additions & 4 deletions docs/tutorials/c++/mxnet_cpp_inference_tutorial.md
Original file line number Diff line number Diff line change
Expand Up @@ -4,12 +4,12 @@
MXNet provides various useful tools and interfaces for deploying your model for inference. For example, you can use [MXNet Model Server](/~https://github.com/awslabs/mxnet-model-server) to start a service and host your trained model easily.
Besides that, you can also use MXNet's different language APIs to integrate your model with your existing service. We provide [Python](https://mxnet.incubator.apache.org/api/python/module/module.html), [Java](https://mxnet.incubator.apache.org/api/java/index.html), [Scala](https://mxnet.incubator.apache.org/api/scala/index.html), and [C++](https://mxnet.incubator.apache.org/api/c++/index.html) APIs.

This tutorial is a continuation of the [Gluon end to end tutorial](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/gluon/gluon_from_experiment_to_deployment.md), we will focus on the MXNet C++ API. We have slightly modified the code in [C++ Inference Example](/~https://github.com/apache/incubator-mxnet/tree/master/cpp-package/example/inference) for our use case.
This tutorial is a continuation of the [Gluon end to end tutorial](https://mxnet.apache.org/versions/master/tutorials/gluon/gluon_from_experiment_to_deployment.html), we will focus on the MXNet C++ API. We have slightly modified the code in [C++ Inference Example](/~https://github.com/apache/incubator-mxnet/tree/master/cpp-package/example/inference) for our use case.

## Prerequisites

To complete this tutorial, you need:
- Complete the training part of [Gluon end to end tutorial](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/gluon/end_to_end_tutorial_training.md)
- Complete the training part of [Gluon end to end tutorial](https://mxnet.apache.org/versions/master/tutorials/gluon/gluon_from_experiment_to_deployment.html)
- Learn the basics about [MXNet C++ API](/~https://github.com/apache/incubator-mxnet/tree/master/cpp-package)


Expand All @@ -20,7 +20,7 @@ The summary of those two documents is that you need to build MXNet from source w

## Load the model and run inference

After you complete [the previous tutorial](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/gluon/end_to_end_tutorial_training.md), you will get the following output files:
After you complete [the previous tutorial](https://mxnet.apache.org/versions/master/tutorials/gluon/gluon_from_experiment_to_deployment.html), you will get the following output files:
1. Model Architecture stored in `flower-recognition-symbol.json`
2. Model parameter values stored in `flower-recognition-0040.params` (`0040` is for 40 epochs we ran)
3. Label names stored in `synset.txt`
Expand Down Expand Up @@ -262,6 +262,6 @@ Now you can explore more ways to run inference and deploy your models:

## References

1. [Gluon end to end tutorial](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/gluon/end_to_end_tutorial_training.md)
1. [Gluon end to end tutorial](https://mxnet.apache.org/versions/master/tutorials/gluon/gluon_from_experiment_to_deployment.html)
2. [Gluon C++ inference example](/~https://github.com/apache/incubator-mxnet/blob/master/cpp-package/example/inference/)
3. [Gluon C++ package](/~https://github.com/apache/incubator-mxnet/tree/master/cpp-package)
39 changes: 9 additions & 30 deletions docs/tutorials/gluon/gluon_from_experiment_to_deployment.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

## Overview
MXNet Gluon API comes with a lot of great features, and it can provide you everything you need: from experimentation to deploying the model. In this tutorial, we will walk you through a common use case on how to build a model using gluon, train it on your data, and deploy it for inference.
This tutorial covers training and inference in Python, please continue to [C++ inference part](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/c++/mxnet_cpp_inference_tutorial.md) after you finish.
This tutorial covers training and inference in Python, please continue to [C++ inference part](https://mxnet.incubator.apache.org/versions/master/tutorials/c++/mxnet_cpp_inference_tutorial.html) after you finish.

Let's say you need to build a service that provides flower species recognition. A common problem is that you don't have enough data to train a good model. In such cases, a technique called Transfer Learning can be used to make a more robust model.
In Transfer Learning we make use of a pre-trained model that solves a related task, and was trained on a very large standard dataset, such as ImageNet. ImageNet is from a different domain, but we can utilize the knowledge in this pre-trained model to perform the new task at hand.
Expand All @@ -30,7 +30,7 @@ We have prepared a utility file to help you download and organize your data into
```python
import mxnet as mx
data_util_file = "oxford_102_flower_dataset.py"
base_url = "https://raw.githubusercontent.com/roywei/incubator-mxnet/gluon_tutorial/docs/tutorial_utils/data/{}?raw=true"
base_url = "https://raw.githubusercontent.com/apache/incubator-mxnet/master/docs/tutorial_utils/data/{}?raw=true"
mx.test_utils.download(base_url.format(data_util_file), fname=data_util_file)
import oxford_102_flower_dataset

Expand All @@ -39,28 +39,7 @@ path = './data'
oxford_102_flower_dataset.get_data(path)
```

Now your data will be organized into the following format, all the images belong to the same category will be put together in the following pattern:
```bash
data
|--train
| |-- class0
| | |-- image_06736.jpg
| | |-- image_06741.jpg
...
| |-- class1
| | |-- image_06755.jpg
| | |-- image_06899.jpg
...
|-- test
| |-- class0
| | |-- image_00731.jpg
| | |-- image_0002.jpg
...
| |-- class1
| | |-- image_00036.jpg
| | |-- image_05011.jpg

```
Now your data will be organized into train, test, and validation sets, images belong to the same class are moved to the same folder.

## Training using Gluon

Expand All @@ -83,11 +62,11 @@ from mxnet.gluon.model_zoo.vision import resnet50_v2
```

Next, we define the hyper-parameters that we will use for fine-tuning. We will use the [MXNet learning rate scheduler](https://mxnet.incubator.apache.org/tutorials/gluon/learning_rate_schedules.html) to adjust learning rates during training.

Here we set the `epochs` to 1 for quick demonstration, please change to 40 for actual training.

```python
classes = 102
epochs = 40
epochs = 1
lr = 0.001
per_device_batch_size = 32
momentum = 0.9
Expand All @@ -110,7 +89,7 @@ Now we will apply data augmentations on training images. This makes minor altera
4. Transpose the data from `[height, width, num_channels]` to `[num_channels, height, width]`, and map values from [0, 255] to [0, 1]
5. Normalize with the mean and standard deviation from the ImageNet dataset.

For validation and inference, we only need to apply step 1, 4, and 5. We also need to save the mean and standard deviation values for [inference using C++](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/c++/mxnet_cpp_inference_tutorial.md).
For validation and inference, we only need to apply step 1, 4, and 5. We also need to save the mean and standard deviation values for [inference using C++](https://mxnet.incubator.apache.org/versions/master/tutorials/c++/mxnet_cpp_inference_tutorial.html).

```python
jitter_param = 0.4
Expand Down Expand Up @@ -245,7 +224,7 @@ print('[Finished] Test-acc: %.3f' % (test_acc))
```

Following is the training result:
```bash
```
[Epoch 40] Train-acc: 0.945, loss: 0.354 | Val-acc: 0.955 | learning-rate: 4.219E-04 | time: 17.8
[Finished] Test-acc: 0.952
```
Expand Down Expand Up @@ -309,13 +288,13 @@ print('probability=%f, class=%s' % (prob[idx], labels[idx]))
```

Following is the output, you can see the image has been classified as lotus correctly.
```bash
```
probability=9.798435, class=lotus
```

## What's next

You can continue to the [next tutorial](https://github.com/apache/incubator-mxnet/tree/master/docs/tutorials/c++/mxnet_cpp_inference_tutorial.md) on how to load the model we just trained and run inference using MXNet C++ API.
You can continue to the [next tutorial](https://mxnet.incubator.apache.org/versions/master/tutorials/c++/mxnet_cpp_inference_tutorial.html) on how to load the model we just trained and run inference using MXNet C++ API.

You can also find more ways to run inference and deploy your models here:
1. [Java Inference examples](/~https://github.com/apache/incubator-mxnet/tree/master/scala-package/examples/src/main/java/org/apache/mxnetexamples/javaapi/infer)
Expand Down
56 changes: 28 additions & 28 deletions docs/tutorials/gluon/hybrid.md
Original file line number Diff line number Diff line change
Expand Up @@ -154,33 +154,33 @@ However, that's not the case in Symbol API. It's not automatically broadcasted,

| NDArray APIs | Description |
|---|---|
| [*NDArray.\__add\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__add__) | x.\__add\__(y) <=> x+y <=> mx.nd.add(x, y) |
| [*NDArray.\__sub\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__sub__) | x.\__sub\__(y) <=> x-y <=> mx.nd.subtract(x, y) |
| [*NDArray.\__mul\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mul__) | x.\__mul\__(y) <=> x*y <=> mx.nd.multiply(x, y) |
| [*NDArray.\__div\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__div__) | x.\__div\__(y) <=> x/y <=> mx.nd.divide(x, y) |
| [*NDArray.\__mod\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mod__) | x.\__mod\__(y) <=> x%y <=> mx.nd.modulo(x, y) |
| [*NDArray.\__lt\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__lt__) | x.\__lt\__(y) <=> x<y <=> x mx.nd.lesser(x, y) |
| [*NDArray.\__le\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__le__) | x.\__le\__(y) <=> x<=y <=> mx.nd.less_equal(x, y) |
| [*NDArray.\__gt\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__gt__) | x.\__gt\__(y) <=> x>y <=> mx.nd.greater(x, y) |
| [*NDArray.\__ge\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ge__) | x.\__ge\__(y) <=> x>=y <=> mx.nd.greater_equal(x, y)|
| [*NDArray.\__eq\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__eq__) | x.\__eq\__(y) <=> x==y <=> mx.nd.equal(x, y) |
| [*NDArray.\__ne\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ne__) | x.\__ne\__(y) <=> x!=y <=> mx.nd.not_equal(x, y) |
| [NDArray.\__add\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__add__) | x.\__add\__(y) <=> x+y <=> mx.nd.add(x, y) |
| [NDArray.\__sub\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__sub__) | x.\__sub\__(y) <=> x-y <=> mx.nd.subtract(x, y) |
| [NDArray.\__mul\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mul__) | x.\__mul\__(y) <=> x*y <=> mx.nd.multiply(x, y) |
| [NDArray.\__div\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__div__) | x.\__div\__(y) <=> x/y <=> mx.nd.divide(x, y) |
| [NDArray.\__mod\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__mod__) | x.\__mod\__(y) <=> x%y <=> mx.nd.modulo(x, y) |
| [NDArray.\__lt\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__lt__) | x.\__lt\__(y) <=> x<y <=> x mx.nd.lesser(x, y) |
| [NDArray.\__le\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__le__) | x.\__le\__(y) <=> x<=y <=> mx.nd.less_equal(x, y) |
| [NDArray.\__gt\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__gt__) | x.\__gt\__(y) <=> x>y <=> mx.nd.greater(x, y) |
| [NDArray.\__ge\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ge__) | x.\__ge\__(y) <=> x>=y <=> mx.nd.greater_equal(x, y)|
| [NDArray.\__eq\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__eq__) | x.\__eq\__(y) <=> x==y <=> mx.nd.equal(x, y) |
| [NDArray.\__ne\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__ne__) | x.\__ne\__(y) <=> x!=y <=> mx.nd.not_equal(x, y) |

The current workaround is to use corresponding broadcast operators for arithmetic and comparison to avoid potential hybridization failure when input shapes are different.

| Symbol APIs | Description |
|---|---|
|[*broadcast_add*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_add) | Returns element-wise sum of the input arrays with broadcasting. |
|[*broadcast_sub*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_sub) | Returns element-wise difference of the input arrays with broadcasting. |
|[*broadcast_mul*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_mul) | Returns element-wise product of the input arrays with broadcasting. |
|[*broadcast_div*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_div) | Returns element-wise division of the input arrays with broadcasting. |
|[*broadcast_mod*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_mod) | Returns element-wise modulo of the input arrays with broadcasting. |
|[*broadcast_equal*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_equal) | Returns the result of element-wise *equal to* (==) comparison operation with broadcasting. |
|[*broadcast_not_equal*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_not_equal) | Returns the result of element-wise *not equal to* (!=) comparison operation with broadcasting. |
|[*broadcast_greater*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_greater) | Returns the result of element-wise *greater than* (>) comparison operation with broadcasting. |
|[*broadcast_greater_equal*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_greater_equal) | Returns the result of element-wise *greater than or equal to* (>=) comparison operation with broadcasting. |
|[*broadcast_lesser*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_lesser) | Returns the result of element-wise *lesser than* (<) comparison operation with broadcasting. |
|[*broadcast_lesser_equal*](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_lesser_equal) | Returns the result of element-wise *lesser than or equal to* (<=) comparison operation with broadcasting. |
|[broadcast_add](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_add) | Returns element-wise sum of the input arrays with broadcasting. |
|[broadcast_sub](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_sub) | Returns element-wise difference of the input arrays with broadcasting. |
|[broadcast_mul](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_mul) | Returns element-wise product of the input arrays with broadcasting. |
|[broadcast_div](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_div) | Returns element-wise division of the input arrays with broadcasting. |
|[broadcast_mod](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_mod) | Returns element-wise modulo of the input arrays with broadcasting. |
|[broadcast_equal](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_equal) | Returns the result of element-wise *equal to* (==) comparison operation with broadcasting. |
|[broadcast_not_equal](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_not_equal) | Returns the result of element-wise *not equal to* (!=) comparison operation with broadcasting. |
|[broadcast_greater](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_greater) | Returns the result of element-wise *greater than* (>) comparison operation with broadcasting. |
|[broadcast_greater_equal](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_greater_equal) | Returns the result of element-wise *greater than or equal to* (>=) comparison operation with broadcasting. |
|[broadcast_lesser](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_lesser) | Returns the result of element-wise *lesser than* (<) comparison operation with broadcasting. |
|[broadcast_lesser_equal](https://mxnet.incubator.apache.org/api/python/symbol/symbol.html#mxnet.symbol.broadcast_lesser_equal) | Returns the result of element-wise *lesser than or equal to* (<=) comparison operation with broadcasting. |

For example, if you want to add a NDarray to your input x, use `broadcast_add` instead of `+`:

Expand All @@ -196,7 +196,7 @@ If you used `+`, it would still work before hybridization, but will throw an err

Gluon's imperative interface is very flexible and allows you to print the shape of the NDArray. However, Symbol does not have shape attributes. As a result, you need to avoid printing shapes in `hybrid_forward`.
Otherwise, you will get the following error:
```bash
```
AttributeError: 'Symbol' object has no attribute 'shape'
```

Expand Down Expand Up @@ -230,11 +230,11 @@ For example, avoid writing `x += y` and use `x = x + y`, otherwise you will get

| NDArray in-place arithmetic operators | Description |
|---|---|
|[*NDArray.\__iadd\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__iadd__) | x.\__iadd\__(y) <=> x+=y |
|[*NDArray.\__isub\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__isub__) | x.\__isub\__(y) <=> x-=y |
|[*NDArray.\__imul\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__imul__) | x.\__imul\__(y) <=> x*=y |
|[*NDArray.\__idiv\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__idiv__) | x.\__rdiv\__(y) <=> x/=y |
|[*NDArray.\__imod\__*](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__imod__) | x.\__rmod\__(y) <=> x%=y |
|[NDArray.\__iadd\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__iadd__) | x.\__iadd\__(y) <=> x+=y |
|[NDArray.\__isub\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__isub__) | x.\__isub\__(y) <=> x-=y |
|[NDArray.\__imul\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__imul__) | x.\__imul\__(y) <=> x*=y |
|[NDArray.\__idiv\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__idiv__) | x.\__rdiv\__(y) <=> x/=y |
|[NDArray.\__imod\__](https://mxnet.incubator.apache.org/api/python/ndarray/ndarray.html#mxnet.ndarray.NDArray.__imod__) | x.\__rmod\__(y) <=> x%=y |



Expand Down
Loading

0 comments on commit 546a23e

Please sign in to comment.