-
Notifications
You must be signed in to change notification settings - Fork 47
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
392 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,391 @@ | ||
//! Stabilized bi-conjugate gradient solver. Suitable for non-symmetric matrices. | ||
//! A simple, sparse-sparse, serial, un-preconditioned implementation. | ||
//! | ||
//! # References | ||
//! The original paper, which is thoroughly paywalled but widely referenced: | ||
//! | ||
//! ```text | ||
//! H. A. van der Vorst, | ||
//! “Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems,” | ||
//! SIAM Journal on Scientific and Statistical Computing, Jul. 2006, doi: 10.1137/0913035. | ||
//! ``` | ||
//! | ||
//! A useful discussion of computational cost and convergence characteristics for the CG | ||
//! family of algorithms can be found in the paper that introduces QMRCGSTAB, in Table 1: | ||
//! | ||
//! ```text | ||
//! T. F. Chan, E. Gallopoulos, V. Simoncini, T. Szeto, and C. H. Tong, | ||
//! “A Quasi-Minimal Residual Variant of the Bi-CGSTAB Algorithm for Nonsymmetric Systems,” | ||
//! SIAM J. Sci. Comput., vol. 15, no. 2, pp. 338–347, Mar. 1994, doi: 10.1137/0915023. | ||
//! ``` | ||
//! | ||
//! A less-paywalled pseudocode variant for this solver (as well as CG aand CGS) can be found at: | ||
//! ```text | ||
//! https://utminers.utep.edu/xzeng/2017spring_math5330/MATH_5330_Computational_Methods_of_Linear_Algebra_files/ln07.pdf | ||
//! ``` | ||
//! | ||
//! # Example | ||
//! ```rust | ||
//! use sprs::{CsMatI, CsVecI}; | ||
//! use sprs::linalg::bicgstab::BiCGSTAB; | ||
//! | ||
//! let a = CsMatI::new_csc( | ||
//! (4, 4), | ||
//! vec![0, 2, 4, 6, 8], | ||
//! vec![0, 3, 1, 2, 1, 2, 0, 3], | ||
//! vec![1.0, 2., 21., 6., 6., 2., 2., 8.], | ||
//! ); | ||
//! | ||
//! // Solve Ax=b | ||
//! let tol = 1e-60; | ||
//! let max_iter = 50; | ||
//! let b = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0; 4]); | ||
//! let x0 = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0, 1.0, 1.0, 1.0]); | ||
//! | ||
//! let res = BiCGSTAB::<'_, f64, _, _>::solve( | ||
//! a.view(), | ||
//! x0.view(), | ||
//! b.view(), | ||
//! tol, | ||
//! max_iter, | ||
//! ) | ||
//! .unwrap(); | ||
//! let b_recovered = &a * &res.x(); | ||
//! | ||
//! println!("Iteration count {:?}", res.i()); | ||
//! println!("Soft restart count {:?}", res.soft_restart_count()); | ||
//! println!("Hard restart count {:?}", res.hard_restart_count()); | ||
//! | ||
//! // Make sure the solved values match expectation | ||
//! for (input, output) in | ||
//! b.to_dense().iter().zip(b_recovered.to_dense().iter()) | ||
//! { | ||
//! assert!( | ||
//! (1.0 - input / output).abs() < tol, | ||
//! "Solved output did not match input" | ||
//! ); | ||
//! } | ||
//! ``` | ||
//! | ||
//! # Commentary | ||
//! This implementation differs slightly from the common pseudocode variations in the following ways: | ||
//! * Both soft-restart and hard-restart logic are present | ||
//! * Soft restart on `r` becoming perpendicular to `rhat` | ||
//! * Hard restart to check true error before claiming convergence | ||
//! * Soft-restart logic uses a correct metric of perpendicularity instead of a magnitude heuristic | ||
//! * The usual method, which compares a fixed value to `rho`, does not capture the fact that the | ||
//! magnitude of `rho` will naturally decrease as the solver approaches convergence | ||
//! * This change eliminates the effect where the a soft restart is performed on every iteration for the last few | ||
//! iterations of any solve with a reasonable error tolerance | ||
//! * Hard-restart logic provides some real guarantee of correctness | ||
//! * The usual implementations keep a cheap, but inaccurate, running estimate of the error | ||
//! * That decreases the cost of iterations by about half by eliminating a matrix-vector multiplication, | ||
//! but allows the estimate of error to drift numerically, which causes the solver to return claiming | ||
//! convergence when the solved output does not, in fact, match the input system | ||
//! * This change guarantees that the solver will not return claiming convergence unless the solution | ||
//! actually matches the input system, and will refresh its estimate of the error and continue iterations | ||
//! if it has reached a falsely-converged state, continuing until it either reaches true convergence or | ||
//! reaches maximum iterations | ||
use crate::indexing::SpIndex; | ||
use crate::sparse::{CsMatViewI, CsVecI, CsVecViewI}; | ||
use num_traits::One; | ||
|
||
/// Stabilized bi-conjugate gradient solver | ||
#[derive(Debug)] | ||
pub struct BiCGSTAB<'a, T, I: SpIndex, Iptr: SpIndex> { | ||
// Configuration | ||
i: usize, | ||
soft_restart_threshold: T, | ||
soft_restart_count: usize, | ||
hard_restart_count: usize, | ||
// Problem statement: err = a * x - b | ||
err: T, | ||
a: CsMatViewI<'a, T, I, Iptr>, | ||
b: CsVecViewI<'a, T, I>, | ||
x: CsVecI<T, I>, | ||
// Intermediate vectors | ||
r: CsVecI<T, I>, | ||
rhat: CsVecI<T, I>, // Arbitrary w/ dot(rhat, r) != 0 | ||
p: CsVecI<T, I>, | ||
// Intermediate scalars | ||
rho: T, | ||
} | ||
|
||
macro_rules! bicgstab_impl { | ||
($T: ty) => { | ||
impl<'a, I: SpIndex, Iptr: SpIndex> BiCGSTAB<'a, $T, I, Iptr> { | ||
/// Initialize the solver with a fresh error estimat | ||
pub fn new( | ||
a: CsMatViewI<'a, $T, I, Iptr>, | ||
x0: CsVecViewI<'a, $T, I>, | ||
b: CsVecViewI<'a, $T, I>, | ||
) -> Self { | ||
let r = &b - &(&a.view() * &x0.view()).view(); | ||
let rhat = r.to_owned(); | ||
let p = r.to_owned(); | ||
let err = (&r).l2_norm(); | ||
let rho = err * err; | ||
let x = x0.to_owned(); | ||
Self { | ||
i: 0, | ||
soft_restart_threshold: 0.1 * <$T>::one(), // A sensible default | ||
soft_restart_count: 0, | ||
hard_restart_count: 0, | ||
err, | ||
a, | ||
b, | ||
x, | ||
r, | ||
rhat, | ||
p, | ||
rho, | ||
} | ||
} | ||
|
||
/// Attempt to solve the system to the given tolerance on normed error, | ||
/// returning an error if convergence is not achieved within the given | ||
/// number of iterations. | ||
pub fn solve( | ||
a: CsMatViewI<'a, $T, I, Iptr>, | ||
x0: CsVecViewI<'a, $T, I>, | ||
b: CsVecViewI<'a, $T, I>, | ||
tol: $T, | ||
max_iter: usize, | ||
) -> Result< | ||
Box<BiCGSTAB<'a, $T, I, Iptr>>, | ||
Box<BiCGSTAB<'a, $T, I, Iptr>>, | ||
> { | ||
let mut solver = Self::new(a, x0, b); | ||
for _ in 0..max_iter { | ||
solver.step(); | ||
if solver.err() < tol { | ||
// Check true error, which may not match the running error estimate | ||
// and either continue iterations or return depending on result. | ||
solver.hard_restart(); | ||
if solver.err() < tol { | ||
return Ok(Box::new(solver)); | ||
} | ||
} | ||
} | ||
|
||
// If we ran past our iteration limit, error, but still return results | ||
Err(Box::new(solver)) | ||
} | ||
|
||
/// Reset the reference direction `rhat` to be equal to `r` | ||
/// to prevent a singularity in `1 / rho`. | ||
pub fn soft_restart(&mut self) { | ||
self.soft_restart_count += 1; | ||
self.rhat = self.r.to_owned(); | ||
self.rho = self.err * self.err; // Shortcut to (&self.r).squared_l2_norm(); | ||
self.p = self.r.to_owned(); | ||
} | ||
|
||
/// Recalculate the error vector from scratch using `a` and `b`. | ||
pub fn hard_restart(&mut self) { | ||
self.hard_restart_count += 1; | ||
// Recalculate true error | ||
self.r = &self.b - &(&self.a.view() * &self.x.view()).view(); | ||
self.err = (&self.r).l2_norm(); | ||
// Recalculate reference directions | ||
self.soft_restart(); | ||
self.soft_restart_count -= 1; // Don't increment soft restart count for hard restarts | ||
} | ||
|
||
pub fn step(&mut self) -> $T { | ||
self.i += 1; | ||
|
||
// Gradient descent step | ||
let v = &self.a.view() * &self.p.view(); | ||
let alpha = self.rho / ((&self.rhat).dot(&v)); | ||
let h = &self.x + &self.p.map(|x| x * alpha); // latest estimate of `x` | ||
|
||
// Conjugate direction step | ||
let s = &self.r - &v.map(|x| x * alpha); // s = A*h | ||
let t = &self.a.view() * &s.view(); | ||
let omega = t.dot(&s) / &t.squared_l2_norm(); | ||
self.x = &h.view() + &s.map(|x| omega * x); | ||
|
||
// Check error | ||
self.r = &s - &t.map(|x| x * omega); | ||
self.err = (&self.r).l2_norm(); | ||
|
||
// Prep for next pass | ||
let rho_prev = self.rho; | ||
self.rho = (&self.rhat).dot(&self.r); | ||
|
||
// Soft-restart if `rhat` is becoming perpendicular to `r`. | ||
if self.rho.abs() / (self.err * self.err) | ||
< self.soft_restart_threshold | ||
{ | ||
self.soft_restart(); | ||
} else { | ||
let beta = (self.rho / rho_prev) * (alpha / omega); | ||
self.p = &self.r | ||
+ (&self.p - &v.map(|x| x * omega)).map(|x| x * beta); | ||
} | ||
|
||
self.err | ||
} | ||
|
||
/// Set the minimum value of `rho` to trigger a soft restart | ||
pub fn with_restart_threshold(mut self, thresh: $T) -> Self { | ||
self.soft_restart_threshold = thresh; | ||
self | ||
} | ||
|
||
/// Iteration number | ||
pub fn i(&self) -> usize { | ||
self.i | ||
} | ||
|
||
/// The minimum value of `rho` to trigger a soft restart | ||
pub fn soft_restart_threshold(&self) -> $T { | ||
self.soft_restart_threshold | ||
} | ||
|
||
/// Number of soft restarts that have been done so far | ||
pub fn soft_restart_count(&self) -> usize { | ||
self.soft_restart_count | ||
} | ||
|
||
/// Number of soft restarts that have been done so far | ||
pub fn hard_restart_count(&self) -> usize { | ||
self.hard_restart_count | ||
} | ||
|
||
/// Latest estimate of normed error | ||
pub fn err(&self) -> $T { | ||
self.err | ||
} | ||
|
||
/// `dot(rhat, r)`, a measure of how well-conditioned the | ||
/// update to the gradient descent step direction will be. | ||
pub fn rho(&self) -> $T { | ||
self.rho | ||
} | ||
|
||
/// The problem matrix | ||
pub fn a(&self) -> CsMatViewI<'_, $T, I, Iptr> { | ||
self.a.view() | ||
} | ||
|
||
/// The latest solution vector | ||
pub fn x(&self) -> CsVecViewI<'_, $T, I> { | ||
self.x.view() | ||
} | ||
|
||
/// The objective vector | ||
pub fn b(&self) -> CsVecViewI<'_, $T, I> { | ||
self.b.view() | ||
} | ||
|
||
/// Latest residual error vector | ||
pub fn r(&self) -> CsVecViewI<'_, $T, I> { | ||
self.r.view() | ||
} | ||
|
||
/// Latest reference direction. | ||
/// `rhat` is arbitrary w/ dot(rhat, r) != 0, | ||
/// and is reset parallel to `r` when needed to avoid | ||
/// `1 / rho` becoming singular. | ||
pub fn rhat(&self) -> CsVecViewI<'_, $T, I> { | ||
self.rhat.view() | ||
} | ||
|
||
/// Gradient descent step direction, unscaled | ||
pub fn p(&self) -> CsVecViewI<'_, $T, I> { | ||
self.p.view() | ||
} | ||
} | ||
}; | ||
} | ||
|
||
bicgstab_impl!(f64); | ||
bicgstab_impl!(f32); | ||
|
||
#[cfg(test)] | ||
mod test { | ||
use super::*; | ||
use crate::CsMatI; | ||
|
||
#[test] | ||
fn test_bicgstab_f32() { | ||
let a = CsMatI::new_csc( | ||
(4, 4), | ||
vec![0, 2, 4, 6, 8], | ||
vec![0, 3, 1, 2, 1, 2, 0, 3], | ||
vec![1.0, 2., 21., 6., 6., 2., 2., 8.], | ||
); | ||
|
||
// Solve Ax=b | ||
let tol = 1e-18; | ||
let max_iter = 50; | ||
let b = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0; 4]); | ||
let x0 = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0, 1.0, 1.0, 1.0]); | ||
|
||
let res = BiCGSTAB::<'_, f32, _, _>::solve( | ||
a.view(), | ||
x0.view(), | ||
b.view(), | ||
tol, | ||
max_iter, | ||
) | ||
.unwrap(); | ||
let b_recovered = &a * &res.x(); | ||
|
||
println!("Iteration count {:?}", res.i()); | ||
println!("Soft restart count {:?}", res.soft_restart_count()); | ||
println!("Hard restart count {:?}", res.hard_restart_count()); | ||
|
||
// Make sure the solved values match expectation | ||
for (input, output) in | ||
b.to_dense().iter().zip(b_recovered.to_dense().iter()) | ||
{ | ||
assert!( | ||
(1.0 - input / output).abs() < tol, | ||
"Solved output did not match input" | ||
); | ||
} | ||
} | ||
|
||
#[test] | ||
fn test_bicgstab_f64() { | ||
let a = CsMatI::new_csc( | ||
(4, 4), | ||
vec![0, 2, 4, 6, 8], | ||
vec![0, 3, 1, 2, 1, 2, 0, 3], | ||
vec![1.0, 2., 21., 6., 6., 2., 2., 8.], | ||
); | ||
|
||
// Solve Ax=b | ||
let tol = 1e-60; | ||
let max_iter = 50; | ||
let b = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0; 4]); | ||
let x0 = CsVecI::new(4, vec![0, 1, 2, 3], vec![1.0, 1.0, 1.0, 1.0]); | ||
|
||
let res = BiCGSTAB::<'_, f64, _, _>::solve( | ||
a.view(), | ||
x0.view(), | ||
b.view(), | ||
tol, | ||
max_iter, | ||
) | ||
.unwrap(); | ||
let b_recovered = &a * &res.x(); | ||
|
||
println!("Iteration count {:?}", res.i()); | ||
println!("Soft restart count {:?}", res.soft_restart_count()); | ||
println!("Hard restart count {:?}", res.hard_restart_count()); | ||
|
||
// Make sure the solved values match expectation | ||
for (input, output) in | ||
b.to_dense().iter().zip(b_recovered.to_dense().iter()) | ||
{ | ||
assert!( | ||
(1.0 - input / output).abs() < tol, | ||
"Solved output did not match input" | ||
); | ||
} | ||
} | ||
} |