Skip to content

🔪 Elimination based Lightweight Neural Net with Pretrained Weights

License

Notifications You must be signed in to change notification settings

snoop2head/ElimNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ElimNet

Wandb Log

ElimNet: Eliminating Layers in a Neural Network Pretrained with Large Dataset for Downstream Task

📂 Please refer to README.pdf for further information.

  • Removed top layers from pretrained EfficientNetB0 and ResNet18 to construct lightweight CNN model with less than 1M #params.
  • Assessed on Trash Annotations in Context(TACO) Dataset sampled for 6 classes with 20,851 images.
  • Compared performance with lightweight models generated with Optuna's Neural Architecture Search(NAS) constituted with same convolutional blocks.
  • It is speculated that such elimination method will work on neural networks with residual connections, according to the paper of Veit et al(2016) where it shows residual networks behave like ensembles of networks. Refer to Figure 5 attached below, where error when deleting layers linearly increase rather than exponentially increasing.

image-20230330172447858

Quickstart

Installation

# clone the repository
git clone /~https://github.com/snoop2head/elimnet

# fetch image dataset and unzip
!wget -cq https://aistages-prod-server-public.s3.amazonaws.com/app/Competitions/000081/data/data.zip
!unzip ./data.zip -d ./

Train

# finetune on the dataset with pretrained model
python train.py --model ./model/efficientnet/efficientnet_b0.yaml

# finetune on the dataset with ElimNet
python train.py --model ./model/efficientnet/efficientnet_b0_elim_3.yaml

Inference

# inference with the lastest ran model
python inference.py --model_dir ./exp/latest/

Performance

Performance is compared with (1) original pretrained model and (2) Optuna NAS constructed models with no pretrained weights.

  • Indicates that top convolutional layers eliminated pretrained CNN models outperforms empty Optuna NAS models generated with same convolutional blocks.
  • Suggests that eliminating top convolutional layers creates lightweight model that shows similar(or better) classifcation performance with original pretrained model.
  • Reduces parameters to 7%(or less) of its original parameters while maintaining(or improving) its performance. Saves inference time by 20% or more by eliminating top convolutional layters.

ELimNet vs Pretrained Models (Train)

[100 epochs] # of Parameters # of Layers Train Validation Test F1
Pretrained EfficientNet B0 4.0M 352 Loss: 0.43
Acc: 81.23%
F1: 0.84
Loss: 0.469
Acc: 82.17%
F1: 0.76
0.7493
EfficientNet B0 Elim 2 0.9M 245 Loss:0.652
Acc: 87.22%
F1: 0.84
Loss: 0.622
Acc: 87.22%
F1: 0.77
0.7603
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7349
Resnet18 11.17M 69 Loss: 0.578
Acc: 78.90%
F1: 0.76
Loss: 0.700
Acc: 76.17%
F1: 0.719
-
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-

ELimNet vs Pretrained Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Pretrained EfficientNet B0 4.0M 352 3.9s 4.0s 105.7s
EfficientNet B0 Elim 2 0.9M 245 4.1s 13.0s 83.4s
EfficientNet B0 Elim 3 0.30M 181 3.0s 9.0s 73.5s
Resnet18 11.17M 69 - - -
Resnet18 Elim 2 0.68M 37 - - -

ELimNet vs Empty Optuna NAS Models (Train)

[100 epochs] # of Parameters # of Layers Train Valid Test F1
Empty MobileNet V3 4.2M 227 Loss 0.925
Acc: 65.18%
F1: 0.58
Loss 0.993
Acc: 62.83%
F1: 0.56
-
Empty EfficientNet B0 1.3M 352 Loss 0.867
Acc: 67.28%
F1: 0.61
Loss 0.898
Acc: 66.80%
F1: 0.61
0.6337
Empty DWConv & InvertedResidualv3 NAS 0.08M 66 - Loss: 0.766
Acc: 71.71%
F1: 0.68
0.6740
Empty MBConv NAS 0.33M 141 Loss: 0.786
Acc: 70.72%
F1: 0.66
Loss: 0.866
Acc: 68.09%
F1: 0.62
0.6245
Resnet18 Elim 2 0.68M 37 Loss: 0.447
Acc: 83.73%
F1: 0.71
Loss: 0.712
Acc: 75.42%
F1: 0.71
-
EfficientNet B0 Elim 3 0.30M 181 Loss: 0.602
Acc: 78.17%
F1: 0.74
Loss: 0.661
Acc: 77.41%
F1: 0.74
0.7603

ELimNet vs Empty Optuna NAS Models (Inference)

# of Parameters # of Layers CPU times (sec) CUDA time (sec) Test Inference Time (sec)
Empty MobileNet V3 4.2M 227 4 13 -
Empty EfficientNet B0 1.3M 352 3.780 3.782 68.4s
Empty DWConv &
InvertedResidualv3 NAS
0.08M 66 1 3.5 61.1s
Empty MBConv NAS 0.33M 141 2.14 7.201 67.1s
Resnet18 Elim 2 0.68M 37 - - -
EfficientNet B0 Elim 3 0.30M 181 3.0s 9s 73.5s

Background & WiP

Background

Work in Progress

  • Will test the performance of replacing convolutional blocks with pretrained weights with a single convolutional layer without pretrained weights.
  • Will add ResNet18's inference time data and compare with Optuna's NAS constructed lightweight model.
  • Will test on pretrained MobileNetV3, MnasNet on torchvision with elimination based lightweight model architecture search.
  • Will be applied on other small datasets such as Fashion MNIST dataset and Plant Village dataset.

Others

  • "Empty" stands for model with no pretrained weights.
  • "EfficientNet B0 Elim 2" means 2 convolutional blocks have been eliminated from pretrained EfficientNet B0. Number next to "Elim" annotates how many convolutional blocks have been removed.
  • Table's performance illustrates best performance out of 100 epochs of finetuning on TACO Dataset.

Authors

About

🔪 Elimination based Lightweight Neural Net with Pretrained Weights

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages