Skip to content

Repository that contains the code for the paper titled, 'Unifying Distillation with Personalization in Federated Learning'.

License

Notifications You must be signed in to change notification settings

siddharthdivi/Unifying-Distillation-with-Personalization-in-Federated-Learning

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

##########################################################################################################

		UNIFYING DISTILLATION WITH PERSONALIZATION IN FEDERATED LEARNING

##########################################################################################################

# Unifying-Distillation-with-Personalization-in-Federated-Learning
Repository that contains the code for the paper titled, 'Unifying Distillation with Personalization in Federated Learning'.

NOTE: The data required to run the experiments is available at https://tinyurl.com/1hp9ywfa.

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

SECTION-1: SETTING UP THE ENVIRONMENT.

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* Instructions to replicate the experiments in the paper.

* Organisation of this directory.

	- Unifying Distillation with Personalization/ in Federated Learning
		|
		|
		|
		| - Personalized-Federated-Learning.tar.gz
		|
		|
		| - Personalised-Federated-Learning-data.tar.gz
		|
		|
		| - pFedMe.tar.gz
		|
		|
		| - README.txt (this file.)

* All the folders with the associated code and the data have been compressed into tar files.

* First step is to untar all the tar files. 

* Once the files have been decompressed, next create a new folder in the same level as the other folders and name it 'Personalised-Federated-Learning-results' (this is the folder where all the results will be written to).

* Inside 'Personalised-Federated-Learning-results', create the following folders with the below given organisational structure: config/, EpochResults/, log/, results/, state_dict/.
	
	-Personalized-Federated-Learning-results/
		|
		|
		| - config/
		|
		|
		| - EpochResults/
		|
		|
		| - log/
		|
		|
		| - results/
		|
		|
		| - state_dict/

* Then, go to the folder 'Personalized-Federated-Learning/Personalized_Federated/code/cifar/' and read the file named 'experiments_Replication.txt' to generate the experimental results on CIFAR-10.

* After this, go to the folder 'Personalized-Federated-Learning/Personalized_Federated/code/mnist/' and read the file named 'experiments_Replication.txt' to generate the experimental results on MNIST.

* Once the previous two steps are complete, then go to the folder 'pFedMe'.

	<> If the results/ directory is not already existing, then create a new results/ directory.

	<> Then, read the experiments_Replication.txt in pFedMe/ to understand how to generate the experimental results for CIFAR-10 and MNIST for pFedMe and Per-FedAvg.


--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

SECTION-2: CONDUCTING EXPERIMENTS ON CIFAR-10 AND MNIST FOR PersFL-KD, FedAvg, FedPer, PersFL-GD

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* Running the experiments on CIFAR-10.
	<> cd to ~/Personalized-Federated-Learning/Personalized_Federated/code/cifar/.
	<> Run the following commands on the terminal:

		(1) To generate the results for the FedAvg model on CIFAR-10
			nohup bash FedAvg.sh > FedAvg.out &
    
		(2) To generate the results for the FedPer model on CIFAR-10
    			nohup bash FedPer.sh > FedPer.out &
    
		(3) To generate the results for the PersFL model on CIFAR-10
    			nohup bash PersFL-KD.sh > PersFL-KD.out &
    
		(4) To generate the results for the variant of PersFL model on CIFAR-10
    			nohup bash PersFL-GD.sh > PersFL-GD.out &

		(5) To generate the results for Table 4: Opt teachers vs FedAvg model as teacher model for distillation experiment.
    			nohup bash PersFL-KD-GlobInit.sh > PersFL-KD-GlobInit.out &

* Running the experiments on MNIST.
	<> cd to ~/Personalized-Federated-Learning/Personalized_Federated/code/mnist/.
	<> Run the following commands on the terminal:

		(1) To generate the results for the FedAvg model on MNIST
    			nohup bash FedAvg.sh > FedAvg.out &
    
		(2) To generate the results for the FedPer model on MNIST
    			nohup bash FedPer.sh > FedPer.out &
    
		(3) To generate the results for the PersFL model on MNIST
    			nohup bash PersFL-KD.sh > PersFL-KD.out &
    
		(4) To generate the results for the variant of PersFL model on MNIST
    			nohup bash PersFL-GD.sh > PersFL-GD.out &

		(5) To generate the results for Table 5: Opt teachers vs FedAvg model as teacher model for distillation experiment.
    			nohup bash PersFL-KD-GlobInit.sh > PersFL-KD-GlobInit.out &


* Once these experiments are done running, the results for these experiments will be stored in ./EpochResults/ folder as pickle (pkl) files.


--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

	SUB-SECTION-2.1: ANALYSIS OF THE EXPERIMENTAL RESULTS ON CIFAR-10 AND MNIST FOR PersFL-KD, FedAvg, FedPer, PersFL-GD

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
* For an analysis of these results, please take a look at the Jupyter notebooks under the folder: '~/Personalized-Federated-Learning/Personalized_Federated/code/cifar/experiments_Replication/' for CIFAR-10 and under '~/Personalized-Federated-Learning/Personalized_Federated/code/cifar/experiments_Replication/' for MNIST.



--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

SECTION-3: CONDUCTING EXPERIMENTS ON CIFAR-10 AND MNIST FOR pFedMe AND Per-FedAvg

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* Running the experiments on CIFAR-10 & MNIST.
	<> cd to ~/pFedMe/.
	<> Run the following commands on the terminal:

		(1) To generate the results for the pFedMe model on CIFAR-10
    			nohup bash pFedMe_CIFAR-10.sh > pFedMe_CIFAR-10.out &
    
		(2) To generate the results for the Per-FedAvg model on CIFAR-10
    			nohup bash PerFed_CIFAR-10.sh > PerFed_CIFAR-10.out &
    
		(3) To generate the results for the pFedMe model on MNIST
			nohup bash pFedMe_MNIST.sh > pFedMe_MNIST.out &
    
		(4) To generate the results for the Per-FedAvg model on MNIST
    			nohup bash PerFed_MNIST.sh > PerFed_MNIST.out &


* Once these experiments are done running, the results for these experiments will be stored in ./results/ folder.


--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

	SUB-SECTION-3.1: ANALYSIS OF THE EXPERIMENTAL RESULTS ON CIFAR-10 AND MNIST FOR pFedMe AND Per-FedAvg

--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

* For an analysis of these results, please take a look at the Jupyter notebooks under the folder: '~/pFedMe/experiments_Replication/'.


-----
NOTE:
-----

* We conduct our experiments on top of the following publicly available code-bases:
	<> Federated Learning with Personalization Layers: https://bit.ly/35dKebE
	<> Federated Adaptation (to generate the Data-split strategy 2): /~https://github.com/ebagdasa/federated_adaptation
	<> pFedMe (Personalized Federated Learning with Moreau Envelopes): /~https://github.com/CharlieDinh/pFedMe


----------------------------------------------------------------------------------------------------------------------[EOF]----------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------------------------------------------------------[EOF]----------------------------------------------------------------------------------------------------------------------

About

Repository that contains the code for the paper titled, 'Unifying Distillation with Personalization in Federated Learning'.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published