Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Implement Read+Write for HashMap/HashSet #199

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Cargo.toml
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,7 @@ hexlit = "0.5.0"
criterion = "0.3"
alloc_counter = "0.0.4"
trybuild = "1.0"
rustc-hash = "1.0.0"

[[bench]]
name = "deku"
Expand Down
252 changes: 252 additions & 0 deletions src/impls/hashmap.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,252 @@
use crate::{ctx::*, DekuError, DekuRead, DekuWrite};
use bitvec::prelude::*;
use std::collections::HashMap;
use std::hash::{BuildHasher, Hash};

/// Read `K, V`s into a hashmap until a given predicate returns true
/// * `capacity` - an optional capacity to pre-allocate the hashmap with
/// * `ctx` - The context required by `K, V`. It will be passed to every `K, V` when constructing.
/// * `predicate` - the predicate that decides when to stop reading `K, V`s
/// The predicate takes two parameters: the number of bits that have been read so far,
/// and a borrow of the latest value to have been read. It should return `true` if reading
/// should now stop, and `false` otherwise
#[allow(clippy::type_complexity)]
fn read_hashmap_with_predicate<
'a,
K: DekuRead<'a, Ctx> + Eq + Hash,
V: DekuRead<'a, Ctx>,
S: BuildHasher + Default,
Ctx: Copy,
Predicate: FnMut(usize, &(K, V)) -> bool,
>(
input: &'a BitSlice<Msb0, u8>,
capacity: Option<usize>,
ctx: Ctx,
mut predicate: Predicate,
) -> Result<(&'a BitSlice<Msb0, u8>, HashMap<K, V, S>), DekuError> {
let mut res = HashMap::with_capacity_and_hasher(capacity.unwrap_or(0), S::default());

let mut rest = input;
let mut found_predicate = false;

while !found_predicate {
let (new_rest, kv) = <(K, V)>::read(rest, ctx)?;
found_predicate = predicate(input.offset_from(new_rest) as usize, &kv);
res.insert(kv.0, kv.1);
rest = new_rest;
}

Ok((rest, res))
}

impl<
'a,
K: DekuRead<'a, Ctx> + Eq + Hash,
V: DekuRead<'a, Ctx>,
S: BuildHasher + Default,
Ctx: Copy,
Predicate: FnMut(&(K, V)) -> bool,
> DekuRead<'a, (Limit<(K, V), Predicate>, Ctx)> for HashMap<K, V, S>
{
/// Read `K, V`s until the given limit
/// * `limit` - the limiting factor on the amount of `K, V`s to read
/// * `inner_ctx` - The context required by `K, V`. It will be passed to every `K, V`s when constructing.
/// # Examples
/// ```rust
/// # use deku::ctx::*;
/// # use deku::DekuRead;
/// # use deku::bitvec::BitView;
/// # use std::collections::HashMap;
/// let input: Vec<u8> = vec![100, 1, 2, 3, 4];
/// let (rest, map) = HashMap::<u8, u32>::read(input.view_bits(), (1.into(), Endian::Little)).unwrap();
/// assert!(rest.is_empty());
/// let mut expected = HashMap::<u8, u32>::default();
/// expected.insert(100, 0x04030201);
/// assert_eq!(expected, map)
/// ```
fn read(
input: &'a BitSlice<Msb0, u8>,
(limit, inner_ctx): (Limit<(K, V), Predicate>, Ctx),
) -> Result<(&'a BitSlice<Msb0, u8>, Self), DekuError>
where
Self: Sized,
{
match limit {
// Read a given count of elements
Limit::Count(mut count) => {
// Handle the trivial case of reading an empty hashmap
if count == 0 {
return Ok((input, HashMap::<K, V, S>::default()));
}

// Otherwise, read until we have read `count` elements
read_hashmap_with_predicate(input, Some(count), inner_ctx, move |_, _| {
count -= 1;
count == 0
})
}

// Read until a given predicate returns true
Limit::Until(mut predicate, _) => {
read_hashmap_with_predicate(input, None, inner_ctx, move |_, kv| predicate(kv))
}

// Read until a given quantity of bits have been read
Limit::Size(size) => {
let bit_size = size.bit_size();
read_hashmap_with_predicate(input, None, inner_ctx, move |read_bits, _| {
read_bits == bit_size
})
}
}
}
}

impl<
'a,
K: DekuRead<'a> + Eq + Hash,
V: DekuRead<'a>,
S: BuildHasher + Default,
Predicate: FnMut(&(K, V)) -> bool,
> DekuRead<'a, Limit<(K, V), Predicate>> for HashMap<K, V, S>
{
/// Read `K, V`s until the given limit from input for types which don't require context.
fn read(
input: &'a BitSlice<Msb0, u8>,
limit: Limit<(K, V), Predicate>,
) -> Result<(&'a BitSlice<Msb0, u8>, Self), DekuError>
where
Self: Sized,
{
Self::read(input, (limit, ()))
}
}

impl<K: DekuWrite<Ctx>, V: DekuWrite<Ctx>, S, Ctx: Copy> DekuWrite<Ctx> for HashMap<K, V, S> {
/// Write all `K, V`s in a `HashMap` to bits.
/// * **inner_ctx** - The context required by `K, V`.
/// Note: depending on the Hasher `S`, the order in which the `K, V` pairs are
/// written may change between executions. Use a deterministic Hasher for your HashMap
/// instead of the default RandomState hasher if you don't want the order written to change.
/// # Examples
/// ```rust
/// # use deku::{ctx::Endian, DekuWrite};
/// # use deku::bitvec::{Msb0, bitvec};
/// # use std::collections::HashMap;
/// let mut output = bitvec![Msb0, u8;];
/// let mut map = HashMap::<u8, u32>::default();
/// map.insert(100, 0x04030201);
/// map.write(&mut output, Endian::Big).unwrap();
/// let expected: Vec<u8> = vec![100, 4, 3, 2, 1];
/// assert_eq!(expected, output.into_vec())
/// ```
fn write(&self, output: &mut BitVec<Msb0, u8>, inner_ctx: Ctx) -> Result<(), DekuError> {
for kv in self {
kv.write(output, inner_ctx)?;
}
Ok(())
}
}

#[cfg(test)]
mod tests {
use super::*;
use rstest::rstest;
use rustc_hash::FxHashMap;

// Macro to create a deterministic HashMap for tests
// This is needed for tests since the default HashMap Hasher
// RandomState will Hash the keys different for each run of the test cases
// and will make it harder to compare the output of DekuWrite for HashMaps
// with multiple K, V pairs
macro_rules! fxhashmap(
{ $($key:expr => $value:expr),+ } => {
{
let mut m = FxHashMap::default();
$(
m.insert($key, $value);
)+
m
}
};
);

#[rstest(input, endian, bit_size, limit, expected, expected_rest,
case::count_0([0xAA].as_ref(), Endian::Little, Some(8), 0.into(), FxHashMap::default(), bits![Msb0, u8; 1, 0, 1, 0, 1, 0, 1, 0]),
case::count_1([0x01, 0xAA, 0x02, 0xBB].as_ref(), Endian::Little, Some(8), 1.into(), fxhashmap!{0x01 => 0xAA}, bits![Msb0, u8; 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1]),
case::count_2([0x01, 0xAA, 0x02, 0xBB, 0xBB].as_ref(), Endian::Little, Some(8), 2.into(), fxhashmap!{0x01 => 0xAA, 0x02 => 0xBB}, bits![Msb0, u8; 1, 0, 1, 1, 1, 0, 1, 1]),
case::until_null([0x01, 0xAA, 0, 0, 0xBB].as_ref(), Endian::Little, None, (|kv: &(u8, u8)| kv.0 == 0u8 && kv.1 == 0u8).into(), fxhashmap!{0x01 => 0xAA, 0 => 0}, bits![Msb0, u8; 1, 0, 1, 1, 1, 0, 1, 1]),
case::until_bits([0x01, 0xAA, 0xBB].as_ref(), Endian::Little, None, Size::Bits(16).into(), fxhashmap!{0x01 => 0xAA}, bits![Msb0, u8; 1, 0, 1, 1, 1, 0, 1, 1]),
case::bits_6([0b0000_0100, 0b1111_0000, 0b1000_0000].as_ref(), Endian::Little, Some(6), 2.into(), fxhashmap!{0x01 => 0x0F, 0x02 => 0}, bits![Msb0, u8;]),
#[should_panic(expected = "Parse(\"too much data: container of 8 bits cannot hold 9 bits\")")]
case::not_enough_data([].as_ref(), Endian::Little, Some(9), 1.into(), FxHashMap::default(), bits![Msb0, u8;]),
#[should_panic(expected = "Parse(\"too much data: container of 8 bits cannot hold 9 bits\")")]
case::not_enough_data([0xAA].as_ref(), Endian::Little, Some(9), 1.into(), FxHashMap::default(), bits![Msb0, u8;]),
#[should_panic(expected = "Incomplete(NeedSize { bits: 8 })")]
case::not_enough_data([0xAA].as_ref(), Endian::Little, Some(8), 2.into(), FxHashMap::default(), bits![Msb0, u8;]),
#[should_panic(expected = "Incomplete(NeedSize { bits: 8 })")]
case::not_enough_data_until([0xAA].as_ref(), Endian::Little, Some(8), (|_: &(u8, u8)| false).into(), FxHashMap::default(), bits![Msb0, u8;]),
#[should_panic(expected = "Incomplete(NeedSize { bits: 8 })")]
case::not_enough_data_bits([0xAA].as_ref(), Endian::Little, Some(8), (Size::Bits(16)).into(), FxHashMap::default(), bits![Msb0, u8;]),
#[should_panic(expected = "Parse(\"too much data: container of 8 bits cannot hold 9 bits\")")]
case::too_much_data([0xAA, 0xBB].as_ref(), Endian::Little, Some(9), 1.into(), FxHashMap::default(), bits![Msb0, u8;]),
)]
fn test_hashmap_read<Predicate: FnMut(&(u8, u8)) -> bool>(
input: &[u8],
endian: Endian,
bit_size: Option<usize>,
limit: Limit<(u8, u8), Predicate>,
expected: FxHashMap<u8, u8>,
expected_rest: &BitSlice<Msb0, u8>,
) {
let bit_slice = input.view_bits::<Msb0>();

let (rest, res_read) = match bit_size {
Some(bit_size) => {
FxHashMap::<u8, u8>::read(bit_slice, (limit, (endian, Size::Bits(bit_size))))
.unwrap()
}
None => FxHashMap::<u8, u8>::read(bit_slice, (limit, (endian))).unwrap(),
};

assert_eq!(expected, res_read);
assert_eq!(expected_rest, rest);
}

#[rstest(input, endian, expected,
case::normal(fxhashmap!{0x11u8 => 0xAABBu16, 0x23u8 => 0xCCDDu16}, Endian::Little, vec![0x11, 0xBB, 0xAA, 0x23, 0xDD, 0xCC]),
)]
fn test_hashmap_write(input: FxHashMap<u8, u16>, endian: Endian, expected: Vec<u8>) {
let mut res_write = bitvec![Msb0, u8;];
input.write(&mut res_write, endian).unwrap();
assert_eq!(expected, res_write.into_vec());
}

// Note: These tests also exist in boxed.rs
#[rstest(input, endian, limit, expected, expected_rest, expected_write,
case::normal_le([0xAA, 0xBB, 0, 0xCC, 0xDD, 0].as_ref(), Endian::Little, 2.into(), fxhashmap!{0xBBAA => 0, 0xDDCC => 0}, bits![Msb0, u8;], vec![0xCC, 0xDD, 0, 0xAA, 0xBB, 0]),
case::normal_be([0xAA, 0xBB, 0, 0xCC, 0xDD, 0].as_ref(), Endian::Big, 2.into(), fxhashmap!{0xAABB => 0, 0xCCDD => 0}, bits![Msb0, u8;], vec![0xCC, 0xDD, 0, 0xAA, 0xBB, 0]),
case::predicate_le([0xAA, 0xBB, 0, 0xCC, 0xDD, 0].as_ref(), Endian::Little, (|kv: &(u16, u8)| kv.0 == 0xBBAA && kv.1 == 0).into(), fxhashmap!{0xBBAA => 0}, bits![Msb0, u8; 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], vec![0xAA, 0xBB, 0]),
case::predicate_be([0xAA, 0xBB, 0, 0xCC, 0xDD, 0].as_ref(), Endian::Big, (|kv: &(u16, u8)| kv.0 == 0xAABB && kv.1 == 0).into(), fxhashmap!{0xAABB => 0}, bits![Msb0, u8; 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], vec![0xAA, 0xBB, 0]),
case::bytes_le([0xAA, 0xBB, 0, 0xCC, 0xDD, 0].as_ref(), Endian::Little, Size::Bits(24).into(), fxhashmap!{0xBBAA => 0}, bits![Msb0, u8; 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], vec![0xAA, 0xBB, 0]),
case::bytes_be([0xAA, 0xBB, 0, 0xCC, 0xDD, 0].as_ref(), Endian::Big, Size::Bits(24).into(), fxhashmap!{0xAABB => 0}, bits![Msb0, u8; 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0], vec![0xAA, 0xBB, 0]),
)]
fn test_hashmap_read_write<Predicate: FnMut(&(u16, u8)) -> bool>(
input: &[u8],
endian: Endian,
limit: Limit<(u16, u8), Predicate>,
expected: FxHashMap<u16, u8>,
expected_rest: &BitSlice<Msb0, u8>,
expected_write: Vec<u8>,
) {
let bit_slice = input.view_bits::<Msb0>();

let (rest, res_read) = FxHashMap::<u16, u8>::read(bit_slice, (limit, endian)).unwrap();
assert_eq!(expected, res_read);
assert_eq!(expected_rest, rest);

let mut res_write = bitvec![Msb0, u8;];
res_read.write(&mut res_write, endian).unwrap();
assert_eq!(expected_write, res_write.into_vec());
}
}
Loading