Skip to content

Commit

Permalink
ONNX import: Hardmax (apache#13717)
Browse files Browse the repository at this point in the history
* ONNX import: Hardmax

* Fix lint errors

* add github link for issue with reshape
  • Loading branch information
vandanavk authored and rondogency committed Jan 9, 2019
1 parent 5114439 commit add5462
Show file tree
Hide file tree
Showing 3 changed files with 31 additions and 3 deletions.
5 changes: 3 additions & 2 deletions python/mxnet/contrib/onnx/onnx2mx/_import_helper.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from ._op_translations import tanh, arccos, arcsin, arctan, _cos, _sin, _tan
from ._op_translations import softplus, shape, gather, lp_pooling, size
from ._op_translations import ceil, floor, hardsigmoid, global_lppooling
from ._op_translations import concat
from ._op_translations import concat, hardmax
from ._op_translations import leaky_relu, _elu, _prelu, _selu, softmax, fully_connected
from ._op_translations import global_avgpooling, global_maxpooling, linalg_gemm
from ._op_translations import sigmoid, pad, relu, matrix_multiplication, batch_norm
Expand Down Expand Up @@ -144,5 +144,6 @@
'HardSigmoid' : hardsigmoid,
'LpPool' : lp_pooling,
'DepthToSpace' : depthtospace,
'SpaceToDepth' : spacetodepth
'SpaceToDepth' : spacetodepth,
'Hardmax' : hardmax
}
26 changes: 26 additions & 0 deletions python/mxnet/contrib/onnx/onnx2mx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -714,3 +714,29 @@ def spacetodepth(attrs, inputs, proto_obj):
new_attrs = translation_utils._fix_attribute_names(attrs, {'blocksize':'block_size'})

return "space_to_depth", new_attrs, inputs


def hardmax(attrs, inputs, proto_obj):
"""Returns batched one-hot vectors."""
input_tensor_data = proto_obj.model_metadata.get('input_tensor_data')[0]
input_shape = input_tensor_data[1]

axis = int(attrs.get('axis', 1))
axis = axis if axis >= 0 else len(input_shape) + axis

if axis == len(input_shape) - 1:
amax = symbol.argmax(inputs[0], axis=-1)
one_hot = symbol.one_hot(amax, depth=input_shape[-1])
return one_hot, attrs, inputs

# since reshape doesn't take a tensor for shape,
# computing with np.prod. This needs to be changed to
# to use mx.sym.prod() when mx.sym.reshape() is fixed.
# (/~https://github.com/apache/incubator-mxnet/issues/10789)
new_shape = (int(np.prod(input_shape[:axis])),
int(np.prod(input_shape[axis:])))
reshape_op = symbol.reshape(inputs[0], new_shape)
amax = symbol.argmax(reshape_op, axis=-1)
one_hot = symbol.one_hot(amax, depth=new_shape[-1])
hardmax_op = symbol.reshape(one_hot, input_shape)
return hardmax_op, attrs, inputs
3 changes: 2 additions & 1 deletion tests/python-pytest/onnx/test_cases.py
Original file line number Diff line number Diff line change
Expand Up @@ -90,7 +90,8 @@
'test_averagepool_2d_strides',
'test_averagepool_3d',
'test_LpPool_',
'test_split_equal'
'test_split_equal',
'test_hardmax'
],
'export': ['test_random_uniform',
'test_random_normal',
Expand Down

0 comments on commit add5462

Please sign in to comment.