Skip to content

Commit

Permalink
[MXNET-212] [R] Fix Random Samplers from Uniform and Gaussian distrib…
Browse files Browse the repository at this point in the history
…ution in R bindings (apache#10450)

* fix random samplers-uniform and gaussian

* add tests for gaussian and uniform distributions

* fix precision issues that may cause flakiness.
  • Loading branch information
anirudhacharya authored and hetong007 committed Apr 9, 2018
1 parent f423116 commit e33e6d9
Show file tree
Hide file tree
Showing 2 changed files with 21 additions and 2 deletions.
4 changes: 2 additions & 2 deletions R-package/R/random.R
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@ mx.runif <- function(shape, min=0, max=1, ctx=NULL) {
if (!is.numeric(min)) stop("mx.rnorm only accept numeric min")
if (!is.numeric(max)) stop("mx.rnorm only accept numeric max")
ret <- mx.nd.internal.empty(shape, ctx)
return (mx.nd.internal.sample.uniform(min, max, shape=shape, out=ret))
return (mx.nd.internal.random.uniform(min, max, shape=shape, out=ret))
}

#' Generate nomal distribution with mean and sd.
Expand All @@ -73,5 +73,5 @@ mx.rnorm <- function(shape, mean=0, sd=1, ctx=NULL) {
if (!is.numeric(mean)) stop("mx.rnorm only accept numeric mean")
if (!is.numeric(sd)) stop("mx.rnorm only accept numeric sd")
ret <- mx.nd.internal.empty(shape, ctx)
return (mx.nd.internal.sample.normal(mean, sd, shape=shape, out=ret))
return (mx.nd.internal.random.normal(mean, sd, shape=shape, out=ret))
}
19 changes: 19 additions & 0 deletions R-package/tests/testthat/test_random.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,19 @@
require(mxnet)

context("random")

test_that("mx.runif", {
X <- mx.runif(shape=50000, min=0, max=1, ctx=mx.ctx.default())
expect_equal(X>=0, mx.nd.ones(50000))
expect_equal(X<=1, mx.nd.ones(50000))
sample_mean = mean(as.array(X))
expect_equal(sample_mean, 0.5, tolerance=1e-2)
})

test_that("mx.rnorm", {
X <- mx.rnorm(shape=50000, mean=5, sd=0.1, ctx=mx.ctx.default())
sample_mean = mean(as.array(X))
sample_sd = sd(as.array(X))
expect_equal(sample_mean, 5, tolerance=1e-2)
expect_equal(sample_sd, 0.1, tolerance=1e-2)
})

0 comments on commit e33e6d9

Please sign in to comment.