-
Notifications
You must be signed in to change notification settings - Fork 301
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Refactor Checkpointer #871
Merged
Merged
Changes from all commits
Commits
Show all changes
13 commits
Select commit
Hold shift + click to select a range
2a57609
Update
fegin e6960e4
Update
fegin 4b34bfa
Update
fegin c7621f3
Update
fegin 1cc8d65
Update
fegin 59c49f1
Update
fegin a886799
Update
fegin c7d7991
Update
fegin 0128b99
Update
fegin 6368448
Update
fegin 206df62
Update
fegin 272a9e6
Update
fegin 29caadc
Update
fegin File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,279 @@ | ||
# Copyright (c) Meta Platforms, Inc. and affiliates. | ||
# All rights reserved. | ||
# | ||
# This source code is licensed under the BSD-style license found in the | ||
# LICENSE file in the root directory of this source tree. | ||
|
||
import os | ||
import shutil | ||
import tempfile | ||
import time | ||
import unittest | ||
from concurrent.futures import ThreadPoolExecutor | ||
from dataclasses import dataclass, field | ||
from unittest import mock | ||
|
||
import torch | ||
|
||
from torchtitan.components.checkpoint import CheckpointManager | ||
|
||
|
||
def fake_dcp_save(state, checkpoint_id): | ||
state = {k: v.state_dict() for k, v in state.items()} | ||
os.makedirs(checkpoint_id, exist_ok=True) | ||
torch.save(state, os.path.join(checkpoint_id, "state.pt")) | ||
|
||
|
||
def fake_dcp_load(state, checkpoint_id): | ||
state["trainer"].dcp_load_is_called = 7312 | ||
|
||
|
||
def fake_async_save(state, checkpoint_id, process_group): | ||
def run_save(): | ||
fake_dcp_save(state, checkpoint_id) | ||
|
||
with ThreadPoolExecutor(max_workers=1) as executor: | ||
f = executor.submit(run_save) | ||
|
||
mock_future = mock.Mock() | ||
mock_future.result = mock.Mock(side_effect=f.result) | ||
return mock_future | ||
|
||
|
||
def fake_get_model_state_dict(model, *args, **kwargs): | ||
return model.state_dict() | ||
|
||
|
||
@dataclass | ||
class DummyCheckpointConfig: | ||
enable_checkpoint: bool = True | ||
folder: str = "dummy_folder" | ||
interval: int = 10 | ||
async_mode: str = "disabled" | ||
keep_latest_k: int = 0 | ||
model_weights_only: bool = False | ||
export_dtype: str = "float32" | ||
exclude_from_loading = [] | ||
|
||
|
||
@dataclass | ||
class DummyJob: | ||
dump_folder: str = "dummy_folder" | ||
|
||
|
||
@dataclass | ||
class DummyJobConfig: | ||
checkpoint: DummyCheckpointConfig = field(default_factory=DummyCheckpointConfig) | ||
job: DummyJob = field(default_factory=DummyJob) | ||
|
||
|
||
# Dummy instances to supply as constructor arguments. | ||
dummy_dataloader = mock.Mock() | ||
dummy_dataloader.state_dict = mock.Mock(side_effect=lambda: {"dataloader": 1}) | ||
dummy_model_parts = [mock.Mock()] | ||
dummy_model_parts[0].state_dict = mock.Mock(side_effect=lambda: {"model": 2}) | ||
dummy_optimizers = mock.Mock() | ||
dummy_optimizers.state_dict = mock.Mock(side_effect=lambda: {"optimizer": 3}) | ||
dummy_lr_schedulers = mock.Mock() | ||
dummy_lr_schedulers.state_dict = mock.Mock(side_effect=lambda: {"lr_scheduler": 4}) | ||
|
||
|
||
class TestCheckpointManager(unittest.TestCase): | ||
def setUp(self): | ||
self.temp_dir = tempfile.mkdtemp() | ||
|
||
self.dummy_job = DummyJob(dump_folder=self.temp_dir) | ||
self.job_config = DummyJobConfig(job=self.dummy_job) | ||
self.checkpoint_folder = os.path.join( | ||
self.dummy_job.dump_folder, self.job_config.checkpoint.folder | ||
) | ||
os.makedirs(self.checkpoint_folder, exist_ok=True) | ||
self.trainer_state = mock.Mock() | ||
self.trainer_state.state_dict = mock.Mock(side_effect=lambda: {"my_state": 765}) | ||
|
||
def tearDown(self): | ||
# Remove the temporary directory after each test. | ||
shutil.rmtree(self.temp_dir) | ||
|
||
@mock.patch( | ||
"torchtitan.components.checkpoint.get_model_state_dict", | ||
side_effect=fake_get_model_state_dict, | ||
) | ||
@mock.patch("torchtitan.components.checkpoint.dcp.save", side_effect=fake_dcp_save) | ||
def test_save(self, *_): | ||
"""Test that calling save() writes a checkpoint file to disk.""" | ||
job_config = DummyJobConfig(job=self.dummy_job) | ||
manager = CheckpointManager( | ||
dummy_dataloader, | ||
dummy_model_parts, | ||
dummy_optimizers, | ||
dummy_lr_schedulers, | ||
{"trainer": self.trainer_state}, | ||
job_config, | ||
) | ||
step = 20 | ||
manager.save(curr_step=step, force=True) | ||
state_file = self._checkpoint_id(step) | ||
self.assertTrue( | ||
os.path.exists(state_file), "The checkpoint file was not created on disk." | ||
) | ||
loaded_state = torch.load(state_file, weights_only=False) | ||
self.assertEqual( | ||
loaded_state["trainer"]["my_state"], | ||
765, | ||
"Saved state does not match expected value.", | ||
) | ||
|
||
@mock.patch( | ||
"torchtitan.components.checkpoint.get_model_state_dict", | ||
side_effect=fake_get_model_state_dict, | ||
) | ||
@mock.patch("torchtitan.components.checkpoint.dcp.load", side_effect=fake_dcp_load) | ||
@mock.patch("torchtitan.components.checkpoint.dcp.save", side_effect=fake_dcp_save) | ||
def test_load(self, *_): | ||
"""Test that load() properly reads the checkpoint file from disk and restores state.""" | ||
job_config = DummyJobConfig(job=self.dummy_job) | ||
manager = CheckpointManager( | ||
dummy_dataloader, | ||
dummy_model_parts, | ||
dummy_optimizers, | ||
dummy_lr_schedulers, | ||
{"trainer": self.trainer_state}, | ||
job_config, | ||
) | ||
step = 30 | ||
manager.save(curr_step=step, force=True) | ||
# Simulate a state change. | ||
manager.states["test"] = 999 | ||
success = manager.load(step=step) | ||
self.assertTrue( | ||
success, | ||
"The load() method should have returned True for an existing checkpoint.", | ||
) | ||
self.assertTrue(hasattr(manager.states["trainer"], "dcp_load_is_called")) | ||
|
||
self.assertEqual( | ||
manager.states["trainer"].dcp_load_is_called, | ||
7312, | ||
"The state was not correctly restored after loading.", | ||
) | ||
|
||
@mock.patch("torchtitan.components.checkpoint.dist.get_rank", return_value=0) | ||
@mock.patch( | ||
"torchtitan.components.checkpoint.get_model_state_dict", | ||
side_effect=fake_get_model_state_dict, | ||
) | ||
@mock.patch("torchtitan.components.checkpoint.dcp.save", side_effect=fake_dcp_save) | ||
def test_purge_stale_checkpoints_rank_zero(self, *_): | ||
""" | ||
Test that when keep_latest_k is 3 and dist.get_rank() returns 0, stale checkpoints | ||
are purged by placing the correct paths into the purge queue. | ||
""" | ||
job_config = DummyJobConfig(job=self.dummy_job) | ||
job_config.checkpoint.keep_latest_k = 3 | ||
manager = CheckpointManager( | ||
dummy_dataloader, | ||
dummy_model_parts, | ||
dummy_optimizers, | ||
dummy_lr_schedulers, | ||
{"trainer": self.trainer_state}, | ||
job_config, | ||
) | ||
steps = [10, 20, 30, 40, 50] | ||
for s in steps: | ||
manager.save(curr_step=s, force=False) | ||
while not manager.purge_queue.empty(): | ||
time.sleep(1) | ||
time.sleep(1) | ||
os.sync() | ||
expected_paths = [ | ||
os.path.join(self.checkpoint_folder, "step-30"), | ||
os.path.join(self.checkpoint_folder, "step-40"), | ||
os.path.join(self.checkpoint_folder, "step-50"), | ||
] | ||
for step in [10, 20]: | ||
self.assertFalse( | ||
os.path.exists(self._checkpoint_id(step)), | ||
"The checkpoint is not purged.", | ||
) | ||
|
||
for step in [30, 40, 50]: | ||
self.assertTrue( | ||
os.path.exists(self._checkpoint_id(step)), "The checkpointis purged." | ||
) | ||
|
||
@mock.patch("torchtitan.components.checkpoint.dist.get_rank", return_value=1) | ||
@mock.patch( | ||
"torchtitan.components.checkpoint.get_model_state_dict", | ||
side_effect=fake_get_model_state_dict, | ||
) | ||
@mock.patch("torchtitan.components.checkpoint.dcp.save", side_effect=fake_dcp_save) | ||
def test_purge_stale_checkpoints_rank_nonzero(self, *_): | ||
""" | ||
Test that when dist.get_rank() returns a non-zero value, the purge logic does not | ||
place any paths in the purge queue. | ||
""" | ||
job_config = DummyJobConfig(job=self.dummy_job) | ||
job_config.checkpoint.keep_latest_k = 3 | ||
manager = CheckpointManager( | ||
dummy_dataloader, | ||
dummy_model_parts, | ||
dummy_optimizers, | ||
dummy_lr_schedulers, | ||
{"trainer": self.trainer_state}, | ||
job_config, | ||
) | ||
steps = [10, 20, 30, 40, 50] | ||
for s in steps: | ||
manager.save(curr_step=s, force=False) | ||
while not manager.purge_queue.empty(): | ||
time.sleep(1) | ||
time.sleep(1) | ||
os.sync() | ||
|
||
for step in [10, 20, 30, 40, 50]: | ||
self.assertTrue( | ||
os.path.exists(self._checkpoint_id(step)), "The checkpointis purged." | ||
) | ||
|
||
@mock.patch("torchtitan.components.checkpoint.dist.new_group") | ||
@mock.patch( | ||
"torchtitan.components.checkpoint.get_model_state_dict", | ||
side_effect=fake_get_model_state_dict, | ||
) | ||
@mock.patch( | ||
"torchtitan.components.checkpoint.dcp.async_save", side_effect=fake_async_save | ||
) | ||
def test_async_save_calls_async_wait(self, *_): | ||
""" | ||
Test that in async mode (AsyncMode.ASYNC), calling save() twice correctly waits | ||
on the previous async future via _async_wait(). | ||
""" | ||
# Set async_mode to "async" in the job configuration. | ||
job_config = DummyJobConfig(job=self.dummy_job) | ||
job_config.checkpoint.async_mode = "async" | ||
manager = CheckpointManager( | ||
dummy_dataloader, | ||
dummy_model_parts, | ||
dummy_optimizers, | ||
dummy_lr_schedulers, | ||
{"trainer": self.trainer_state}, | ||
job_config, | ||
) | ||
# First save: should schedule an async save. | ||
manager.save(curr_step=10, force=False) | ||
f = manager.async_future | ||
f.result.assert_not_called() | ||
manager.save(curr_step=20, force=False) | ||
f.result.assert_called_once() | ||
f = manager.async_future | ||
f.result.assert_not_called() | ||
|
||
def _checkpoint_id(self, step): | ||
checkpoint_id = os.path.join(self.checkpoint_folder, f"step-{step}") | ||
state_file = os.path.join(checkpoint_id, "state.pt") | ||
return state_file | ||
|
||
|
||
if __name__ == "__main__": | ||
unittest.main() |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Can this test memory leak as well?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
No, unfortunately. Memory leakage requires some more thorough test. I'm not sure if there is an easy way to test with unittest.