Skip to content

pablovela5620/mini-dust3r

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mini-Dust3r

A miniature version of dust3r only for performing inference. This makes it much easier to use without needing the training/data/eval code. Tested on Linux, Apple Silicon Macs, and Windows (Thanks @Vincentqyw)

example output

Installation

Easily installable via pip

pip install mini-dust3r

Demo

A hosted demo can be found on huggingface here

or from source using Pixi

git clone /~https://github.com/pablovela5620/mini-dust3r.git
pixi run app

You can also just use rerun demo directly with

pixi run rerun-demo

Minimal Example

Uses Rerun to visualize the outputs

import rerun as rr
from pathlib import Path
from argparse import ArgumentParser
import torch

from mini_dust3r.api import OptimizedResult, inferece_dust3r, log_optimized_result
from mini_dust3r.model import AsymmetricCroCo3DStereo


def main(image_dir: Path):
    if torch.backends.mps.is_available():
        device = "mps"
    elif torch.cuda.is_available():
        device = "cuda"
    else:
        device = "cpu"

    model = AsymmetricCroCo3DStereo.from_pretrained(
        "nielsr/DUSt3R_ViTLarge_BaseDecoder_512_dpt"
    ).to(device)

    optimized_results: OptimizedResult = inferece_dust3r(
        image_dir_or_list=image_dir,
        model=model,
        device=device,
        batch_size=1,
    )
    log_optimized_result(optimized_results, Path("world"))


if __name__ == "__main__":
    parser = ArgumentParser("mini-dust3r rerun demo script")
    parser.add_argument(
        "--image-dir",
        type=Path,
        help="Directory containing images to process",
        required=True,
    )
    rr.script_add_args(parser)
    args = parser.parse_args()
    rr.script_setup(args, "mini-dust3r")
    main(args.image_dir)
    rr.script_teardown(args)

Inputs and Outputs

Inference Fuction

def inferece_dust3r(
    image_dir_or_list: Path | list[Path],
    model: AsymmetricCroCo3DStereo,
    device: Literal["cpu", "cuda", "mps"],
    batch_size: int = 1,
    image_size: Literal[224, 512] = 512,
    niter: int = 100,
    schedule: Literal["linear", "cosine"] = "linear",
    min_conf_thr: float = 10,
) -> OptimizedResult:

Consists of

  • image_dir_or_list - Path to the directory containing images or a list of image paths
  • model - The Dust3r model to use for inference
  • device - device to use for inference ("cpu", "cuda", or "mps")
  • batch_size - The batch size for inference. Defaults to 1.
  • image_size - The size of the input images. Defaults to 512.
  • niter - The number of iterations for the global alignment optimization. Defaults to 100.
  • schedule - The learning rate schedule for the global alignment optimization. Defaults to "linear"
  • min_conf_thr - The minimum confidence threshold for the optimized result. Defaults to 10.

Output from OptimizedResult

@dataclass
class OptimizedResult:
    K_b33: Float32[np.ndarray, "b 3 3"]
    world_T_cam_b44: Float32[np.ndarray, "b 4 4"]
    rgb_hw3_list: list[Float32[np.ndarray, "h w 3"]]
    depth_hw_list: list[Float32[np.ndarray, "h w"]]
    conf_hw_list: list[Float32[np.ndarray, "h w"]]
    masks_list: Bool[np.ndarray, "h w"]
    point_cloud: trimesh.PointCloud
    mesh: trimesh.Trimesh

Consists of

  • K_b33 - camera intrinsics of shape (b33)
  • world_T_cam_b44 - camera to world transformation matrix of shape b44 in OpenCV convention X - Right Y - Down Z - Forward (RDF)
  • rgb_hw3_list - list of RGB images shape (list[hw3])
  • depth_hw_list - list of normalized depth maps shape (list[hw])
  • conf_hw_list - list of normalized confidence values (list[hw])
  • mask_list - list of masks (list[hw])
  • point cloud - as a trimesh pointcloud object
  • mesh - as a trimesh mesh object

References

Full credit goes the Naver for their great work on

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published