Skip to content

Commit

Permalink
Release 0.14 (#1266)
Browse files Browse the repository at this point in the history
  • Loading branch information
mfeurer authored Jul 4, 2023
1 parent 3380bbb commit 2791074
Show file tree
Hide file tree
Showing 56 changed files with 1,031 additions and 601 deletions.
4 changes: 2 additions & 2 deletions .github/workflows/pre-commit.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,10 @@ jobs:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v3
- name: Setup Python 3.7
- name: Setup Python 3.8
uses: actions/setup-python@v4
with:
python-version: 3.7
python-version: 3.8
- name: Install pre-commit
run: |
pip install pre-commit
Expand Down
2 changes: 2 additions & 0 deletions .github/workflows/test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -53,6 +53,7 @@ jobs:
- os: windows-latest
sklearn-only: 'false'
scikit-learn: 0.24.*
scipy: 1.10.0
fail-fast: false
max-parallel: 4

Expand Down Expand Up @@ -113,5 +114,6 @@ jobs:
uses: codecov/codecov-action@v3
with:
files: coverage.xml
token: ${{ secrets.CODECOV_TOKEN }}
fail_ci_if_error: true
verbose: true
14 changes: 11 additions & 3 deletions .pre-commit-config.yaml
Original file line number Diff line number Diff line change
@@ -1,11 +1,11 @@
repos:
- repo: /~https://github.com/psf/black
rev: 22.6.0
rev: 23.3.0
hooks:
- id: black
args: [--line-length=100]
- repo: /~https://github.com/pre-commit/mirrors-mypy
rev: v0.961
rev: v1.4.1
hooks:
- id: mypy
name: mypy openml
Expand All @@ -19,8 +19,16 @@ repos:
additional_dependencies:
- types-requests
- types-python-dateutil
- id: mypy
name: mypy top-level-functions
files: openml/_api_calls.py
additional_dependencies:
- types-requests
- types-python-dateutil
args: [ --disallow-untyped-defs, --disallow-any-generics,
--disallow-any-explicit, --implicit-optional ]
- repo: /~https://github.com/pycqa/flake8
rev: 4.0.1
rev: 6.0.0
hooks:
- id: flake8
name: flake8 openml
Expand Down
16 changes: 10 additions & 6 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,15 +20,19 @@ following paper:

[Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, Frank Hutter<br/>
**OpenML-Python: an extensible Python API for OpenML**<br/>
*arXiv:1911.02490 [cs.LG]*](https://arxiv.org/abs/1911.02490)
Journal of Machine Learning Research, 22(100):1−5, 2021](https://www.jmlr.org/papers/v22/19-920.html)

Bibtex entry:
```bibtex
@article{feurer-arxiv19a,
author = {Matthias Feurer and Jan N. van Rijn and Arlind Kadra and Pieter Gijsbers and Neeratyoy Mallik and Sahithya Ravi and Andreas Müller and Joaquin Vanschoren and Frank Hutter},
title = {OpenML-Python: an extensible Python API for OpenML},
journal = {arXiv:1911.02490},
year = {2019},
@article{JMLR:v22:19-920,
author = {Matthias Feurer and Jan N. van Rijn and Arlind Kadra and Pieter Gijsbers and Neeratyoy Mallik and Sahithya Ravi and Andreas Müller and Joaquin Vanschoren and Frank Hutter},
title = {OpenML-Python: an extensible Python API for OpenML},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {100},
pages = {1--5},
url = {http://jmlr.org/papers/v22/19-920.html}
}
```

Expand Down
26 changes: 15 additions & 11 deletions doc/index.rst
Original file line number Diff line number Diff line change
Expand Up @@ -30,7 +30,7 @@ Example
('estimator', tree.DecisionTreeClassifier())
]
)
# Download the OpenML task for the german credit card dataset with 10-fold
# Download the OpenML task for the pendigits dataset with 10-fold
# cross-validation.
task = openml.tasks.get_task(32)
# Run the scikit-learn model on the task.
Expand Down Expand Up @@ -93,17 +93,21 @@ Citing OpenML-Python
If you use OpenML-Python in a scientific publication, we would appreciate a
reference to the following paper:


`OpenML-Python: an extensible Python API for OpenML
<https://arxiv.org/abs/1911.02490>`_,
Feurer *et al.*, arXiv:1911.02490.
| Matthias Feurer, Jan N. van Rijn, Arlind Kadra, Pieter Gijsbers, Neeratyoy Mallik, Sahithya Ravi, Andreas Müller, Joaquin Vanschoren, Frank Hutter
| **OpenML-Python: an extensible Python API for OpenML**
| Journal of Machine Learning Research, 22(100):1−5, 2021
| `https://www.jmlr.org/papers/v22/19-920.html <https://www.jmlr.org/papers/v22/19-920.html>`_
Bibtex entry::

@article{feurer-arxiv19a,
author = {Matthias Feurer and Jan N. van Rijn and Arlind Kadra and Pieter Gijsbers and Neeratyoy Mallik and Sahithya Ravi and Andreas Müller and Joaquin Vanschoren and Frank Hutter},
title = {OpenML-Python: an extensible Python API for OpenML},
journal = {arXiv:1911.02490},
year = {2019},
}
@article{JMLR:v22:19-920,
author = {Matthias Feurer and Jan N. van Rijn and Arlind Kadra and Pieter Gijsbers and Neeratyoy Mallik and Sahithya Ravi and Andreas Müller and Joaquin Vanschoren and Frank Hutter},
title = {OpenML-Python: an extensible Python API for OpenML},
journal = {Journal of Machine Learning Research},
year = {2021},
volume = {22},
number = {100},
pages = {1--5},
url = {http://jmlr.org/papers/v22/19-920.html}
}

59 changes: 46 additions & 13 deletions doc/progress.rst
Original file line number Diff line number Diff line change
Expand Up @@ -6,22 +6,55 @@
Changelog
=========

0.14.0
~~~~~~

**IMPORTANT:** This release paves the way towards a breaking update of OpenML-Python. From version
0.15, functions that had the option to return a pandas DataFrame will return a pandas DataFrame
by default. This version (0.14) emits a warning if you still use the old access functionality.
More concretely:

* In 0.15 we will drop the ability to return dictionaries in listing calls and only provide
pandas DataFrames. To disable warnings in 0.14 you have to request a pandas DataFrame
(using ``output_format="dataframe"``).
* In 0.15 we will drop the ability to return datasets as numpy arrays and only provide
pandas DataFrames. To disable warnings in 0.14 you have to request a pandas DataFrame
(using ``dataset_format="dataframe"``).

Furthermore, from version 0.15, OpenML-Python will no longer download datasets and dataset metadata
by default. This version (0.14) emits a warning if you don't explicitly specifiy the desired behavior.

Please see the pull requests #1258 and #1260 for further information.

* ADD #1081: New flag that allows disabling downloading dataset features.
* ADD #1132: New flag that forces a redownload of cached data.
* FIX #1244: Fixes a rare bug where task listing could fail when the server returned invalid data.
* DOC #1229: Fixes a comment string for the main example.
* DOC #1241: Fixes a comment in an example.
* MAINT #1124: Improve naming of helper functions that govern the cache directories.
* MAINT #1223, #1250: Update tools used in pre-commit to the latest versions (``black==23.30``, ``mypy==1.3.0``, ``flake8==6.0.0``).
* MAINT #1253: Update the citation request to the JMLR paper.
* MAINT #1246: Add a warning that warns the user that checking for duplicate runs on the server cannot be done without an API key.

0.13.1
~~~~~~

* ADD #1028: Add functions to delete runs, flows, datasets, and tasks (e.g., ``openml.datasets.delete_dataset``).
* ADD #1144: Add locally computed results to the ``OpenMLRun`` object's representation if the run was created locally and not downloaded from the server.
* ADD #1180: Improve the error message when the checksum of a downloaded dataset does not match the checksum provided by the API.
* ADD #1201: Make ``OpenMLTraceIteration`` a dataclass.
* DOC #1069: Add argument documentation for the ``OpenMLRun`` class.
* FIX #1197 #559 #1131: Fix the order of ground truth and predictions in the ``OpenMLRun`` object and in ``format_prediction``.
* FIX #1198: Support numpy 1.24 and higher.
* FIX #1216: Allow unknown task types on the server. This is only relevant when new task types are added to the test server.
* MAINT #1155: Add dependabot github action to automatically update other github actions.
* MAINT #1199: Obtain pre-commit's flake8 from github.com instead of gitlab.com.
* MAINT #1215: Support latest numpy version.
* MAINT #1218: Test Python3.6 on Ubuntu 20.04 instead of the latest Ubuntu (which is 22.04).
* MAINT #1221 #1212 #1206 #1211: Update github actions to the latest versions.
* ADD #1081 #1132: Add additional options for (not) downloading datasets ``openml.datasets.get_dataset`` and cache management.
* ADD #1028: Add functions to delete runs, flows, datasets, and tasks (e.g., ``openml.datasets.delete_dataset``).
* ADD #1144: Add locally computed results to the ``OpenMLRun`` object's representation if the run was created locally and not downloaded from the server.
* ADD #1180: Improve the error message when the checksum of a downloaded dataset does not match the checksum provided by the API.
* ADD #1201: Make ``OpenMLTraceIteration`` a dataclass.
* DOC #1069: Add argument documentation for the ``OpenMLRun`` class.
* DOC #1241 #1229 #1231: Minor documentation fixes and resolve documentation examples not working.
* FIX #1197 #559 #1131: Fix the order of ground truth and predictions in the ``OpenMLRun`` object and in ``format_prediction``.
* FIX #1198: Support numpy 1.24 and higher.
* FIX #1216: Allow unknown task types on the server. This is only relevant when new task types are added to the test server.
* FIX #1223: Fix mypy errors for implicit optional typing.
* MAINT #1155: Add dependabot github action to automatically update other github actions.
* MAINT #1199: Obtain pre-commit's flake8 from github.com instead of gitlab.com.
* MAINT #1215: Support latest numpy version.
* MAINT #1218: Test Python3.6 on Ubuntu 20.04 instead of the latest Ubuntu (which is 22.04).
* MAINT #1221 #1212 #1206 #1211: Update github actions to the latest versions.

0.13.0
~~~~~~
Expand Down
2 changes: 1 addition & 1 deletion examples/20_basic/simple_flows_and_runs_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
# NOTE: We are using dataset 20 from the test server: https://test.openml.org/d/20
dataset = openml.datasets.get_dataset(20)
X, y, categorical_indicator, attribute_names = dataset.get_data(
dataset_format="array", target=dataset.default_target_attribute
target=dataset.default_target_attribute
)
clf = neighbors.KNeighborsClassifier(n_neighbors=3)
clf.fit(X, y)
Expand Down
4 changes: 2 additions & 2 deletions examples/30_extended/configure_logging.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@

import logging

openml.config.console_log.setLevel(logging.DEBUG)
openml.config.file_log.setLevel(logging.WARNING)
openml.config.set_console_log_level(logging.DEBUG)
openml.config.set_file_log_level(logging.WARNING)
openml.datasets.get_dataset("iris")

# Now the log level that was previously written to file should also be shown in the console.
Expand Down
6 changes: 5 additions & 1 deletion examples/30_extended/custom_flow_.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,8 @@
# you can use the Random Forest Classifier flow as a *subflow*. It allows for
# all hyperparameters of the Random Classifier Flow to also be specified in your pipeline flow.
#
# Note: you can currently only specific one subflow as part of the components.
#
# In this example, the auto-sklearn flow is a subflow: the auto-sklearn flow is entirely executed as part of this flow.
# This allows people to specify auto-sklearn hyperparameters used in this flow.
# In general, using a subflow is not required.
Expand All @@ -87,6 +89,8 @@
autosklearn_flow = openml.flows.get_flow(9313) # auto-sklearn 0.5.1
subflow = dict(
components=OrderedDict(automl_tool=autosklearn_flow),
# If you do not want to reference a subflow, you can use the following:
# components=OrderedDict(),
)

####################################################################################################
Expand Down Expand Up @@ -124,7 +128,7 @@
OrderedDict([("oml:name", "time"), ("oml:value", 120), ("oml:component", flow_id)]),
]

task_id = 1965 # Iris Task
task_id = 1200 # Iris Task
task = openml.tasks.get_task(task_id)
dataset_id = task.get_dataset().dataset_id

Expand Down
35 changes: 15 additions & 20 deletions examples/30_extended/datasets_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,10 +21,9 @@
# * Use the output_format parameter to select output type
# * Default gives 'dict' (other option: 'dataframe', see below)
#
openml_list = openml.datasets.list_datasets() # returns a dict

# Show a nice table with some key data properties
datalist = pd.DataFrame.from_dict(openml_list, orient="index")
# Note: list_datasets will return a pandas dataframe by default from 0.15. When using
# openml-python 0.14, `list_datasets` will warn you to use output_format='dataframe'.
datalist = openml.datasets.list_datasets(output_format="dataframe")
datalist = datalist[["did", "name", "NumberOfInstances", "NumberOfFeatures", "NumberOfClasses"]]

print(f"First 10 of {len(datalist)} datasets...")
Expand Down Expand Up @@ -65,23 +64,16 @@
############################################################################
# Get the actual data.
#
# The dataset can be returned in 3 possible formats: as a NumPy array, a SciPy
# sparse matrix, or as a Pandas DataFrame. The format is
# controlled with the parameter ``dataset_format`` which can be either 'array'
# (default) or 'dataframe'. Let's first build our dataset from a NumPy array
# and manually create a dataframe.
X, y, categorical_indicator, attribute_names = dataset.get_data(
dataset_format="array", target=dataset.default_target_attribute
)
eeg = pd.DataFrame(X, columns=attribute_names)
eeg["class"] = y
print(eeg[:10])
# openml-python returns data as pandas dataframes (stored in the `eeg` variable below),
# and also some additional metadata that we don't care about right now.
eeg, *_ = dataset.get_data()

############################################################################
# Instead of manually creating the dataframe, you can already request a
# dataframe with the correct dtypes.
# You can optionally choose to have openml separate out a column from the
# dataset. In particular, many datasets for supervised problems have a set
# `default_target_attribute` which may help identify the target variable.
X, y, categorical_indicator, attribute_names = dataset.get_data(
target=dataset.default_target_attribute, dataset_format="dataframe"
target=dataset.default_target_attribute
)
print(X.head())
print(X.info())
Expand All @@ -92,6 +84,9 @@
# data file. The dataset object can be used as normal.
# Whenever you use any functionality that requires the data,
# such as `get_data`, the data will be downloaded.
# Starting from 0.15, not downloading data will be the default behavior instead.
# The data will be downloading automatically when you try to access it through
# openml objects, e.g., using `dataset.features`.
dataset = openml.datasets.get_dataset(1471, download_data=False)

############################################################################
Expand All @@ -100,8 +95,8 @@
# * Explore the data visually.
eegs = eeg.sample(n=1000)
_ = pd.plotting.scatter_matrix(
eegs.iloc[:100, :4],
c=eegs[:100]["class"],
X.iloc[:100, :4],
c=y[:100],
figsize=(10, 10),
marker="o",
hist_kwds={"bins": 20},
Expand Down
1 change: 1 addition & 0 deletions examples/30_extended/fetch_runtimes_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -79,6 +79,7 @@
)
)


# Creating utility function
def print_compare_runtimes(measures):
for repeat, val1 in measures["usercpu_time_millis_training"].items():
Expand Down
9 changes: 4 additions & 5 deletions examples/30_extended/flows_and_runs_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,7 @@
# NOTE: We are using dataset 68 from the test server: https://test.openml.org/d/68
dataset = openml.datasets.get_dataset(68)
X, y, categorical_indicator, attribute_names = dataset.get_data(
dataset_format="array", target=dataset.default_target_attribute
target=dataset.default_target_attribute
)
clf = neighbors.KNeighborsClassifier(n_neighbors=1)
clf.fit(X, y)
Expand All @@ -38,7 +38,7 @@
# * e.g. categorical features -> do feature encoding
dataset = openml.datasets.get_dataset(17)
X, y, categorical_indicator, attribute_names = dataset.get_data(
dataset_format="array", target=dataset.default_target_attribute
target=dataset.default_target_attribute
)
print(f"Categorical features: {categorical_indicator}")
transformer = compose.ColumnTransformer(
Expand Down Expand Up @@ -160,7 +160,7 @@
]
)

run = openml.runs.run_model_on_task(pipe, task, avoid_duplicate_runs=False, dataset_format="array")
run = openml.runs.run_model_on_task(pipe, task, avoid_duplicate_runs=False)
myrun = run.publish()
print(f"Uploaded to {myrun.openml_url}")

Expand All @@ -172,15 +172,14 @@

# To perform the following line offline, it is required to have been called before
# such that the task is cached on the local openml cache directory:
task = openml.tasks.get_task(6)
task = openml.tasks.get_task(96)

# The following lines can then be executed offline:
run = openml.runs.run_model_on_task(
pipe,
task,
avoid_duplicate_runs=False,
upload_flow=False,
dataset_format="array",
)

# The run may be stored offline, and the flow will be stored along with it:
Expand Down
2 changes: 1 addition & 1 deletion examples/30_extended/suites_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@

# We'll take a random subset of at least ten tasks of all available tasks on
# the test server:
all_tasks = list(openml.tasks.list_tasks().keys())
all_tasks = list(openml.tasks.list_tasks(output_format="dataframe")["tid"])
task_ids_for_suite = sorted(np.random.choice(all_tasks, replace=False, size=20))

# The study needs a machine-readable and unique alias. To obtain this,
Expand Down
Loading

0 comments on commit 2791074

Please sign in to comment.