Audio2Chat converts multi-speaker audio files into chat format using AssemblyAI for speaker diarization and optionally Whisper for enhanced transcription.
- Speaker diarization and transcription using AssemblyAI
- Optional enhanced transcription using Whisper large-v3-turbo
- YouTube video download support
- Word-level timestamp support (can be used for speech-to-text and text-to-speech tasks)
- Structured chat format output
# Install from PyPI
pip install audio2chat
# Or install from source
git clone /~https://github.com/neuralwork/audio2chat.git
cd audio2chat
pip install -e .
- Python >=3.8
- FFmpeg (for YouTube downloads)
- CUDA-capable GPU (recommended for Whisper)
Install FFmpeg:
# Ubuntu/Debian
sudo apt update && sudo apt install ffmpeg
# MacOS
brew install ffmpeg
# Windows (using Chocolatey)
choco install ffmpeg
You need to have an Assembly AI account and an API key to use audio2chat. Once you setup an account, you can find the API key on your dashboard.
Basic usage:
# Process local audio file
audio2chat input.wav --api-key YOUR_ASSEMBLYAI_KEY --output output_dir
# Process YouTube video
audio2chat "https://youtube.com/watch?v=xxxxx" --api-key YOUR_ASSEMBLYAI_KEY --output output_dir
All options:
audio2chat --help
required arguments:
input Input audio file path or YouTube URL
--api-key API_KEY AssemblyAI API key
output settings:
--output OUTPUT Output directory for audio and chat data (default: output)
--download-format {mp3,wav}
Audio format for YouTube downloads (default: wav)
transcription settings:
--language LANGUAGE Language code for transcription (default: en)
--num-speakers NUM Expected number of speakers (default: auto-detect)
--use-whisper Use Whisper for enhanced transcription (default: False)
chat generation settings:
--min-segment-confidence CONF
Minimum confidence score to include segment (default: 0.5)
--merge-threshold THRESH
Time threshold to merge adjacent utterances (default: 1.0)
--min-duration DUR Minimum duration for a chat segment (default: 0.5)
--include-metadata Include additional metadata in output (default: True)
--include-word-timestamps
Include word-level timing information (default: False)
vocabulary settings:
--word-boost [WORDS ...]
List of words to boost recognition for
other:
--verbose, -v Enable verbose logging
from audio2chat.pipeline import AudioChatPipeline
from audio2chat.youtube_downloader import download_audio
# For YouTube videos
audio_path = download_audio(
"https://youtube.com/watch?v=xxxxx",
output_dir="downloads",
audio_format="wav"
)
# Initialize pipeline
pipeline = AudioChatPipeline(
api_key="YOUR_ASSEMBLYAI_KEY",
language="en",
num_speakers=2, # or None for auto-detect
use_whisper=True, # enable Whisper for better transcription
include_word_timestamps=True
)
# Process file
chat_data = pipeline.process_file(audio_path, "output/chat.json")
{
"messages": [
{
"speaker": "A",
"text": "Hello there!",
"start": 0,
"end": 1500,
"words": [
{
"text": "Hello",
"start": 0,
"end": 750,
"confidence": 0.98
},
{
"text": "there",
"start": 750,
"end": 1500,
"confidence": 0.95
}
]
}
],
"metadata": {
"num_speakers": 2,
"speakers": ["A", "B"],
"transcription": "whisper+assemblyai"
}
}
Run tests:
# Set up environment
export ASSEMBLYAI_API_KEY=your_key_here
# Add test audio file
cp your_test_audio.wav tests/test_data/input.wav
# Run tests
pytest tests/test_pipeline.py tests/test_chat_builder.py # without Whisper
pytest tests/ # all tests including Whisper
This project is licensed under the MIT license.
From neuralwork with ❤️