Custom tactic named ij_injectfalse
injects False
into the hypothesis.
But the proof occurs an error on Qed.
, because Coq checks the soundness of the proof.
Coq is safe!
cat /etc/os-release | head -1
PRETTY_NAME="Debian GNU/Linux 8 (jessie)"
$ sudo apt-get install git make coq ocaml ocaml-findlib camlp5 libcoq-ocaml-dev devscripts dh-ocaml
$ git clone /~https://github.com/master-q/coqtactic-injectfalse.git
$ cd coqtactic-injectfalse
$ debuild -us -uc
$ ls ../*.deb
../libinjectfalse-tactics-ocaml_0.1_amd64.deb ../libinjectfalse-tactics-ocaml-dev_0.1_amd64.deb
$ sudo dpkg -i ../libinjectfalse-tactics-ocaml*.deb
$ coqtop
Welcome to Coq 8.4pl4 (July 2014)
Coq < Declare ML Module "injectfalse".
[Loading ML file injectfalse.cmxs ... done]
Coq < Theorem plus_0_r : forall n:nat, n + 0 = n.
1 subgoal
============================
forall n : nat, n + 0 = n
plus_0_r < Proof.
1 subgoal
============================
forall n : nat, n + 0 = n
plus_0_r < intros n.
1 subgoal
n : nat
============================
n + 0 = n
plus_0_r < destruct n as [| n'].
2 subgoals
============================
0 + 0 = 0
subgoal 2 is:
S n' + 0 = S n'
plus_0_r < ij_injectfalse.
1 subgoal
n' : nat
============================
S n' + 0 = S n'
plus_0_r < ij_injectfalse.
No more subgoals.
plus_0_r < Show Proof.
(fun n : nat =>
match n as n0 return (n0 + 0 = n0) with
| 0 => False
| S _ => False
end)
plus_0_r < Qed.
intros n.
destruct n as [| n'].
ij_injectfalse.
ij_injectfalse.
Error: In pattern-matching on term "n" the branch for constructor
"0" has type "Prop" which should be "0 + 0 = 0".