This branch holds all platforms actively maintained against the edk2 master branch.
For generic information about the edk2-platforms repository, and the process under which stable and devel branches can be added for individual platforms, please see the introduction on the about branch.
- Overview
- How To Build (Linux Environment)
- How To Build (Windows Environment)
- Supported Platforms
- Maintainers
Platform description files can be found under Platform/{Vendor}/{Platform}
.
Many platforms require additional image processing beyond the EDK2 build. Any such steps should be documented (as a Readme.md), and any necessary helper scripts be contained, under said platform directory.
Any contributions to this branch should be submitted via email to the
edk2-devel mailing list with a subject prefix of [platforms]
. See
Laszlo's excellent guide for details
on how to do this successfully.
The build tools themselves depend on Python (2) and libuuid. Most Linux systems will come with a Python environment installed by default, but you usually need to install uuid-dev (or uuid-devel, depending on distribution) manually.
If building EDK2 for a different archtecture than the build machine, you need to obtain an appropriate cross-compiler. X64 (x86_64) compilers also support IA32, but the reverse may not always be true.
Target architecture | Cross compilation prefix |
---|---|
AARCH64 | aarch64-linux-gnu- |
ARM | arm-linux-gnueabihf- |
IA32 | i?86-linux-gnu-* or x86_64-linux-gnu- |
IPF | ia64-linux-gnu |
X64 | x86_64-linux-gnu- |
* i386, i486, i586 or i686
Linaro provides GCC toolchains for aarch64-linux-gnu and arm-linux-gnueabihf compiled to run on x86_64/i686 Linux and i686 Windows. Some Linux distributions provide their own packaged cross-toolchains.
Clang does not require separate cross compilers, but it does need a target-specific binutils. These are included with any prepackaged GCC toolchain (see above), or can be installed or built separately.
-
Create a new folder (directory) on your local development machine for use as your workspace. This example uses
/work/git/tianocore
, modify as appropriate for your needs.$ export WORKSPACE=/work/git/tianocore $ mkdir -p $WORKSPACE $ cd $WORKSPACE
-
Into that folder, clone:
- edk2
- edk2-platforms
- edk2-non-osi (if building platforms that need it)
$ git clone /~https://github.com/tianocore/edk2.git ... $ git clone /~https://github.com/tianocore/edk2-platforms.git ... $ git clone /~https://github.com/tianocore/edk2-non-osi.git
-
Set up a PACKAGES_PATH to point to the locations of these three repositories:
$ export PACKAGES_PATH=$PWD/edk2:$PWD/edk2-platforms:$PWD/edk2-non-osi
-
Set up the build environment (this will modify your environment variables)
$ . edk2/edksetup.sh
(This step depends on WORKSPACE being set as per above.)
-
Build BaseTools
make -C edk2/BaseTools
(BaseTools can currently not be built in parallel, so do not specify any
-j
option, either on the command line or in a MAKEFLAGS environment variable.)
There are a number of options that can (or must) be specified at the point of
building. Their default values are set in edk2/Conf/target.txt
. If we are
working only on a single platform, it makes sense to just update this file.
target.txt option | command line | Description |
---|---|---|
ACTIVE_PLATFORM | -p |
Description file (.dsc) of platform. |
TARGET | -b |
One of DEBUG, RELEASE or NOOPT. |
TARGET_ARCH | -a |
Architecture to build for. |
TOOL_CHAIN_TAG | -t |
Toolchain profile to use for building. |
There is also MAX_CONCURRENT_THREAD_NUMBER (-n
), roughly equivalent to
make -j
.
When specified on command line, -b
can be repeated multiple times in order to
build multiple targets sequentially.
After a successful build, the resulting images can be found in
Build/{Platform Name}/{TARGET}_{TOOL_CHAIN_TAG}/FV
.
The main build process can run in parallel - so figure out how many threads we have available.
$ getconf _NPROCESSORS_ONLN
8
OK, so we have 8 CPUs - let's tell the build to use a little more than that:
$ NUM_CPUS=$((`getconf _NPROCESSORS_ONLN` + 2))
For the toolchain tag, use GCC5 for gcc version 5 or later, GCC4x for earlier versions, or CLANG35/CLANG38 as appropriate when building with clang.
$ build -n $NUM_CPUS -a AARCH64 -t GCC5 -p Platform/ARM/JunoPkg/ArmJuno.dsc
(Note that the description file gets resolved by the build command through searching in all locations specified in PACKAGES_PATH.)
When cross-compiling, or building with a different version of the compiler than
the default gcc
or clang
(/binutils), we additionally need to inform the
build command which toolchain to use. We do this by setting the environment
variable {TOOL_CHAIN_TAG}_{TARGET_ARCH}_PREFIX
- in the case above,
GCC5_AARCH64_PREFIX.
So, referring to the cross compiler toolchain table above, we should prepend the build
command line with GCC5_AARCH64_PREFIX=aarch64-linux-gnu-
.
uefi-tools is a completely unofficial set of helper-scripts developed by Linaro. They automate figuring out all of the manual options above, and store the paths to platform description files in a separate configuration file. Additionally, they simplify bulk-building large numbers of platforms.
The (best effort) intent is to keep this configuration up to date with all platforms that exist in the edk2-platforms master branch.
The equivalent of the manual example above would be
$ git clone https://git.linaro.org/uefi/uefi-tools.git
...
$ ./uefi-tools/edk2-build.sh juno
...
------------------------------------------------------------
aarch64 Juno (AARCH64) RELEASE pass
------------------------------------------------------------
pass 1
fail 0
The build finishes with a summary of which platforms/targets were built, which succeeded and which failed (and the total number of either).
Like the build
command itself, edk2-build.sh
it supports specifying multiple
targets on a single command line, but it also lets you specify multiple
platforms (or all
for building all known platforms). So in order to build all
platforms described by the configuration file, for both DEBUG and RELEASE
targets:
$ ./uefi-tools/edk2-build.sh -b DEBUG -b RELEASE
(I genuinely have no idea. Please help!)
These are the platforms currently supported by this tree - grouped by Processor/SoC vendor, rather than platform vendor.
If there are any additional build steps beyond the generic ones listed above, they will be documented with the platform.
See Maintainers.txt.