Skip to content
/ CuMCubes Public

CUDA implementation of Marching Cubes for Python (Depends on torch)

License

Notifications You must be signed in to change notification settings

lzhnb/CuMCubes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CuMCubes

CuMCubes is an CUDA implementation of the marching cubes algorithm to extract iso-surfaces from volumetric data. The volumetric data can be given as a three-dimensional torch.Tensor or as a Python function f(x, y, z).

Requirements

The enviroment of my developer machine:

  • Python 3.8.8+
  • PyTorch 1.10.2
  • CUDA 11.1

Installation

You can use pip install cumcubes directly, or use:

python setup.py install

Or use:

pip install .

Or use:

pip install /~https://github.com/lzhnb/CuMCubes

Example

# toy examples from the PyMCubes
python examples/sphere.py
python examples/function.py
# we extract the sdf of bunny via `mesh_to_sdf`
python examples/bunny_sdf.py

The following example creates a torch.Tensor volume with spherical iso-surfaces and extracts one of them (i.e., a sphere) with mcubes.marching_cubes. The result is exported to sphere.dae:

>>> import torch
>>> import cumcubes

>>> X, Y, Z = torch.meshgrid(torch.linspace(0, 99, 200), torch.linspace(0, 99, 200), torch.linspace(0, 99, 200), indexing="ij")
>>> DENSITY_GRID = ((X - 50)**2 + (Y - 50)**2 + (Z - 50)**2 - 25**2).cuda()
>>> with cumcubes.Timer("cuda marching cube: {:.6f}s"):
>>>     vertices_cu, faces_cu = cumcubes.marching_cubes(DENSITY_GRID, 0, verbose=True) # verbose to print the number of vertices and faces
# cuda marching cube: 0.004981s

""" Compare with the CPU implementation """
>>> density_grid_cpu = DENSITY_GRID.cpu().numpy()
>>> with cumcubes.Timer("cpu marching cube: {:.6f}s"):
>>>     vertices_c, faces_c = mcubes.marching_cubes(density_grid_cpu, 0)
# cpu marching cube: 0.337798s

The left image is the result of cumcubes.marching_cubes, the right image is the result of mcubes.marching_cubes. (The Stanford Bunny Example)

NOTE: Mallocating memory on GPU will consume some time.

TODO

  • Python wrapper
  • Examples (More Example)
  • Realizing marching_cubes_func
  • Support CPU version(wrapper of mcubes)
  • Release as python package
  • Support C++ template
  • Optimize the code
  • Sparse Marching Cubes
  • Support more mesh file formats.
  • CUDA-implementation SDF
  • Smoothing components

Acknowledgement

Please feel free to discuss :)

About

CUDA implementation of Marching Cubes for Python (Depends on torch)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published