forked from PaddlePaddle/Paddle
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add quant_aware and quant_post tutorial (PaddlePaddle#83)
- Loading branch information
Showing
4 changed files
with
921 additions
and
0 deletions.
There are no files selected for viewing
342 changes: 342 additions & 0 deletions
342
demo/quant/quant_aware/image_classification_training_aware_quantization_quick_start.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,342 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"# 图像分类模型量化训练-快速开始" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"该教程以图像分类模型MobileNetV1为例,说明如何快速使用PaddleSlim的[量化训练接口](/~https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/docs/api/quantization_api.md)。 该示例包含以下步骤:\n", | ||
"\n", | ||
"1. 导入依赖\n", | ||
"2. 构建模型\n", | ||
"3. 训练模型\n", | ||
"4. 量化\n", | ||
"5. 训练和测试量化后的模型\n", | ||
"6. 保存量化后的模型" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 1. 导入依赖\n", | ||
"PaddleSlim依赖Paddle1.7版本,请确认已正确安装Paddle,然后按以下方式导入Paddle和PaddleSlim:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import paddle\n", | ||
"import paddle.fluid as fluid\n", | ||
"import paddleslim as slim\n", | ||
"import numpy as np" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 2. 构建网络\n", | ||
"该章节构造一个用于对MNIST数据进行分类的分类模型,选用`MobileNetV1`,并将输入大小设置为`[1, 28, 28]`,输出类别数为10。 为了方便展示示例,我们在`paddleslim.models`下预定义了用于构建分类模型的方法,执行以下代码构建分类模型:\n", | ||
"\n", | ||
">注意:paddleslim.models下的API并非PaddleSlim常规API,是为了简化示例而封装预定义的一系列方法,比如:模型结构的定义、Program的构建等。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"exe, train_program, val_program, inputs, outputs = \\\n", | ||
" slim.models.image_classification(\"MobileNet\", [1, 28, 28], 10, use_gpu=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 3. 训练模型\n", | ||
"该章节介绍了如何定义输入数据和如何训练和测试分类模型。先训练分类模型的原因是量化训练过程是在训练好的模型上进行的,也就是说是在训练好的模型的基础上加入量化反量化op之后,用小学习率进行参数微调。\n", | ||
"\n", | ||
"### 3.1 定义输入数据\n", | ||
"\n", | ||
"为了快速执行该示例,我们选取简单的MNIST数据,Paddle框架的`paddle.dataset.mnist`包定义了MNIST数据的下载和读取。\n", | ||
"代码如下:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import paddle.dataset.mnist as reader\n", | ||
"train_reader = paddle.batch(\n", | ||
" reader.train(), batch_size=128, drop_last=True)\n", | ||
"test_reader = paddle.batch(\n", | ||
" reader.train(), batch_size=128, drop_last=True)\n", | ||
"train_feeder = fluid.DataFeeder(inputs, fluid.CPUPlace())" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"### 3.2 训练和测试\n", | ||
"先定义训练和测试函数,正常训练和量化训练时只需要调用函数即可。在训练函数中执行了一个epoch的训练,因为MNIST数据集数据较少,一个epoch就可将top1精度训练到95%以上。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"def train(prog):\n", | ||
" iter = 0\n", | ||
" for data in train_reader():\n", | ||
" acc1, acc5, loss = exe.run(prog, feed=train_feeder.feed(data), fetch_list=outputs)\n", | ||
" if iter % 100 == 0:\n", | ||
" print('train iter={}, top1={}, top5={}, loss={}'.format(iter, acc1.mean(), acc5.mean(), loss.mean()))\n", | ||
" iter += 1\n", | ||
" \n", | ||
"def test(prog):\n", | ||
" iter = 0\n", | ||
" res = [[], []]\n", | ||
" for data in train_reader():\n", | ||
" acc1, acc5, loss = exe.run(prog, feed=train_feeder.feed(data), fetch_list=outputs)\n", | ||
" if iter % 100 == 0:\n", | ||
" print('test iter={}, top1={}, top5={}, loss={}'.format(iter, acc1.mean(), acc5.mean(), loss.mean()))\n", | ||
" res[0].append(acc1.mean())\n", | ||
" res[1].append(acc5.mean())\n", | ||
" iter += 1\n", | ||
" print('final test result top1={}, top5={}'.format(np.array(res[0]).mean(), np.array(res[1]).mean()))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"调用``train``函数训练分类网络,``train_program``是在第2步:构建网络中定义的。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"train iter=0, top1=0.1171875, top5=0.546875, loss=2.79680204391\n", | ||
"train iter=100, top1=0.9296875, top5=1.0, loss=0.305284500122\n", | ||
"train iter=200, top1=0.9609375, top5=0.9921875, loss=0.158525630832\n", | ||
"train iter=300, top1=0.9609375, top5=0.9921875, loss=0.146427512169\n", | ||
"train iter=400, top1=0.9609375, top5=1.0, loss=0.179066047072\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"train(train_program)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"调用``test``函数测试分类网络,``val_program``是在第2步:构建网络中定义的。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"test iter=0, top1=0.96875, top5=1.0, loss=0.0801232308149\n", | ||
"test iter=100, top1=0.9609375, top5=1.0, loss=0.104892581701\n", | ||
"test iter=200, top1=0.96875, top5=1.0, loss=0.156774014235\n", | ||
"test iter=300, top1=0.984375, top5=1.0, loss=0.0931615754962\n", | ||
"test iter=400, top1=0.9453125, top5=1.0, loss=0.184863254428\n", | ||
"final test result top1=0.970469415188, top5=0.999282181263\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"test(val_program)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 4. 量化\n", | ||
"\n", | ||
"按照[默认配置](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/#_1)在``train_program``和``val_program``中加入量化和反量化op." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"2020-02-06 09:08:49,489-INFO: quant_aware config {'moving_rate': 0.9, 'weight_quantize_type': 'channel_wise_abs_max', 'is_full_quantize': False, 'dtype': 'int8', 'weight_bits': 8, 'window_size': 10000, 'activation_bits': 8, 'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'], 'not_quant_pattern': ['skip_quant'], 'activation_quantize_type': 'moving_average_abs_max', 'for_tensorrt': False}\n", | ||
"2020-02-06 09:08:50,943-INFO: quant_aware config {'moving_rate': 0.9, 'weight_quantize_type': 'channel_wise_abs_max', 'is_full_quantize': False, 'dtype': 'int8', 'weight_bits': 8, 'window_size': 10000, 'activation_bits': 8, 'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'], 'not_quant_pattern': ['skip_quant'], 'activation_quantize_type': 'moving_average_abs_max', 'for_tensorrt': False}\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"quant_program = slim.quant.quant_aware(train_program, exe.place, for_test=False)\n", | ||
"val_quant_program = slim.quant.quant_aware(val_program, exe.place, for_test=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 5. 训练和测试量化后的模型\n", | ||
"微调量化后的模型,训练一个epoch后测试。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 8, | ||
"metadata": { | ||
"scrolled": true | ||
}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"train iter=0, top1=0.953125, top5=1.0, loss=0.184170544147\n", | ||
"train iter=100, top1=0.96875, top5=1.0, loss=0.0945074558258\n", | ||
"train iter=200, top1=0.9765625, top5=1.0, loss=0.0915599390864\n", | ||
"train iter=300, top1=0.9765625, top5=1.0, loss=0.0562560297549\n", | ||
"train iter=400, top1=0.9609375, top5=1.0, loss=0.094195574522\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"train(quant_program)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"测试量化后的模型,和``3.2 训练和测试``中得到的测试结果相比,精度相近,达到了无损量化。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 9, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"test iter=0, top1=0.984375, top5=1.0, loss=0.0542894415557\n", | ||
"test iter=100, top1=0.9609375, top5=1.0, loss=0.0662319809198\n", | ||
"test iter=200, top1=0.9609375, top5=1.0, loss=0.0832970961928\n", | ||
"test iter=300, top1=0.9921875, top5=1.0, loss=0.0262515246868\n", | ||
"test iter=400, top1=0.96875, top5=1.0, loss=0.123742781579\n", | ||
"final test result top1=0.984057843685, top5=0.999799668789\n" | ||
] | ||
} | ||
], | ||
"source": [ | ||
"test(val_quant_program)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": {}, | ||
"source": [ | ||
"## 6. 保存量化后的模型\n", | ||
"\n", | ||
"在``4. 量化``中使用接口``slim.quant.quant_aware``接口得到的模型只适合训练时使用,为了得到最终使用时的模型,需要使用[slim.quant.convert](https://paddlepaddle.github.io/PaddleSlim/api/quantization_api/#convert)接口,然后使用[fluid.io.save_inference_model](https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/api_cn/io_cn/save_inference_model_cn.html#save-inference-model)保存模型。``float_prog``的参数数据类型是float32,但是数据范围是int8, 保存之后可使用fluid或者paddle-lite加载使用,paddle-lite在使用时,会先将类型转换为int8。``int8_prog``的参数数据类型是int8, 保存后可看到量化后模型大小,不可加载使用。" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stderr", | ||
"output_type": "stream", | ||
"text": [ | ||
"2020-02-06 09:09:27,529-INFO: convert config {'moving_rate': 0.9, 'weight_quantize_type': 'channel_wise_abs_max', 'is_full_quantize': False, 'dtype': 'int8', 'weight_bits': 8, 'window_size': 10000, 'activation_bits': 8, 'quantize_op_types': ['conv2d', 'depthwise_conv2d', 'mul'], 'not_quant_pattern': ['skip_quant'], 'activation_quantize_type': 'moving_average_abs_max', 'for_tensorrt': False}\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"[u'save_infer_model/scale_0',\n", | ||
" u'save_infer_model/scale_1',\n", | ||
" u'save_infer_model/scale_2']" | ||
] | ||
}, | ||
"execution_count": 10, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"float_prog, int8_prog = slim.quant.convert(val_quant_program, exe.place, save_int8=True)\n", | ||
"target_vars = [float_prog.global_block().var(name) for name in outputs]\n", | ||
"fluid.io.save_inference_model(dirname='./inference_model/float',\n", | ||
" feeded_var_names=[var.name for var in inputs],\n", | ||
" target_vars=target_vars,\n", | ||
" executor=exe,\n", | ||
" main_program=float_prog)\n", | ||
"fluid.io.save_inference_model(dirname='./inference_model/int8',\n", | ||
" feeded_var_names=[var.name for var in inputs],\n", | ||
" target_vars=target_vars,\n", | ||
" executor=exe,\n", | ||
" main_program=int8_prog)" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 2", | ||
"language": "python", | ||
"name": "python2" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 2 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython2", | ||
"version": "2.7.12" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2 | ||
} |
Oops, something went wrong.