Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Document Bitblasting in a documentation comment #5620

Merged
merged 4 commits into from
Oct 7, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions src/Init/Data/BitVec/Bitblast.lean
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,80 @@ as vectors of bits into proofs about Lean `BitVec` values.
The module is named for the bit-blasting operation in an SMT solver that converts bitvector
expressions into expressions about individual bits in each vector.

### Example: How bitblasting works for multiplication

We explain how the lemmas here are used for bitblasting,
by using multiplication as a prototypical example.
Other bitblasters for other operations follow the same pattern.
To bitblast a multiplication of the form `x * y`,
we must unfold the above into a form that the SAT solver understands.

We assume that the solver already knows how to bitblast addition.
This is known to `bv_decide`, by exploiting the lemma `add_eq_adc`,
which says that `x + y : BitVec w` equals `(adc x y false).2`,
where `adc` builds an add-carry circuit in terms of the primitive operations
(bitwise and, bitwise or, bitwise xor) that bv_decide already understands.
In this way, we layer bitblasters on top of each other,
by reducing the multiplication bitblaster to an addition operation.

The core lemma is given by `getLsbD_mul`:

```lean
x y : BitVec w ⊢ (x * y).getLsbD i = (mulRec x y w).getLsbD i
```

Which says that the `i`th bit of `x * y` can be obtained by
evaluating the `i`th bit of `(mulRec x y w)`.
Once again, we assume that `bv_decide` knows how to implement `getLsbD`,
given that `mulRec` can be understood by `bv_decide`.

We write two lemmas to enable `bv_decide` to unfold `(mulRec x y w)`
into a complete circuit, **when `w` is a known constant**`.
This is given by two recurrence lemmas, `mulRec_zero_eq` and `mulRec_succ_eq`,
which are applied repeatedly when the width is `0` and when the width is `w' + 1`:

```lean
mulRec_zero_eq :
mulRec x y 0 =
if y.getLsbD 0 then x else 0

mulRec_succ_eq
mulRec x y (s + 1) =
mulRec x y s +
if y.getLsbD (s + 1) then (x <<< (s + 1)) else 0 := rfl
```

By repeatedly applying the lemmas `mulRec_zero_eq` and `mulRec_succ_eq`,
one obtains a circuit for multiplication.
Note that this circuit uses `BitVec.add`, `BitVec.getLsbD`, `BitVec.shiftLeft`.
Here, `BitVec.add` and `BitVec.shiftLeft` are (recursively) bitblasted by `bv_decide`,
using the lemmas `add_eq_adc` and `shiftLeft_eq_shiftLeftRec`,
and `BitVec.getLsbD` is a primitive that `bv_decide` knows how to reduce to SAT.

The two lemmas, `mulRec_zero_eq`, and `mulRec_succ_eq`,
are used in `Std.Tactic.BVDecide.BVExpr.bitblast.blastMul`
to prove the correctness of the circuit that is built by `bv_decide`.

```lean
def blastMul (aig : AIG BVBit) (input : AIG.BinaryRefVec aig w) : AIG.RefVecEntry BVBit w
theorem denote_blastMul (aig : AIG BVBit) (lhs rhs : BitVec w) (assign : Assignment) :
...
⟦(blastMul aig input).aig, (blastMul aig input).vec.get idx hidx, assign.toAIGAssignment⟧
=
(lhs * rhs).getLsbD idx
```

The definition and theorem above are internal to `bv_decide`,
and use `mulRec_{zero,succ}_eq` to prove that the circuit built by `bv_decide`
computes the correct value for multiplication.

To zoom out, therefore, we follow two steps:
First, we prove bitvector lemmas to unfold a high-level operation (such as multiplication)
into already bitblastable operations (such as addition and left shift).
We then use these lemmas to prove the correctness of the circuit that `bv_decide` builds.

We use this workflow to implement bitblasting for all SMT-LIB2 operations.

## Main results
* `x + y : BitVec w` is `(adc x y false).2`.

Expand Down
Loading