Skip to content

Implementation of the paper: "Aurora: A Foundation Model of the Atmosphere" in PyTorch

License

Notifications You must be signed in to change notification settings

kyegomez/Aurora

Repository files navigation

Multi-Modality

Aurora

Join our Discord Subscribe on YouTube Connect on LinkedIn Follow on X.com

Aurora

Community and Open Source Implementation of the paper: "Aurora: A Foundation Model of the Atmosphere" in PyTorch: Paper link

Install

pip3 install aurora-torch

Example

import torch
from aurora_torch.main import SwinTransformerUNet3D
from loguru import logger

# Test with random input tensor of shape (B, D, H, W, C)
B, D, H, W, C = 2, 16, 64, 64, 32
model = SwinTransformerUNet3D(input_dim=C, output_dim=C)
input_tensor = torch.rand(B, D, H, W, C)

# Forward pass through the model
output = model(input_tensor)
logger.info(f"Output shape: {output.shape}")

License

MIT

Bibtex

@misc{bodnar2024aurora,
    title={Aurora: A Foundation Model of the Atmosphere}, 
    author={Cristian Bodnar and Wessel P. Bruinsma and Ana Lucic and Megan Stanley and Johannes Brandstetter and Patrick Garvan and Maik Riechert and Jonathan Weyn and Haiyu Dong and Anna Vaughan and Jayesh K. Gupta and Kit Tambiratnam and Alex Archibald and Elizabeth Heider and Max Welling and Richard E. Turner and Paris Perdikaris},
    year={2024},
    eprint={2405.13063},
    archivePrefix={arXiv},
    primaryClass={physics.ao-ph}
}

References

About

Implementation of the paper: "Aurora: A Foundation Model of the Atmosphere" in PyTorch

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published