Skip to content

Commit

Permalink
Update onnx support to 1.7.0
Browse files Browse the repository at this point in the history
Forward port of apache#19017

Co-authored-by: Joe Evans <joeev@amazon.com>
  • Loading branch information
josephevans and Joe Evans committed Nov 23, 2020
1 parent 221344e commit 5727510
Show file tree
Hide file tree
Showing 11 changed files with 413 additions and 103 deletions.
3 changes: 2 additions & 1 deletion ci/docker/install/requirements
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,8 @@ graphviz<0.9.0,>=0.8.1
contextvars;python_version<"3.7"

# Optional dependencies
onnx==1.5.0
onnx==1.7.0
onnxruntime==1.4.0
# protobuf version frozen due to ps-lite
protobuf==3.5.2
scipy==1.4.1
Expand Down
4 changes: 3 additions & 1 deletion ci/docker/runtime_functions.sh
Original file line number Diff line number Diff line change
Expand Up @@ -913,11 +913,13 @@ unittest_centos7_gpu() {
integrationtest_ubuntu_cpu_onnx() {
set -ex
export PYTHONPATH=./python/
export DMLC_LOG_STACK_TRACE_DEPTH=10
export MXNET_SUBGRAPH_VERBOSE=0
export DMLC_LOG_STACK_TRACE_DEPTH=10
python3 tests/python/unittest/onnx/backend_test.py
OMP_NUM_THREADS=$(expr $(nproc) / 4) pytest -n 4 tests/python/unittest/onnx/mxnet_export_test.py
OMP_NUM_THREADS=$(expr $(nproc) / 4) pytest -n 4 tests/python/unittest/onnx/test_models.py
OMP_NUM_THREADS=$(expr $(nproc) / 4) pytest -n 4 tests/python/unittest/onnx/test_node.py
OMP_NUM_THREADS=$(expr $(nproc) / 4) pytest -n 4 tests/python-pytest/onnx/test_onnxruntime.py
}

integrationtest_ubuntu_cpu_dist_kvstore() {
Expand Down
217 changes: 156 additions & 61 deletions python/mxnet/contrib/onnx/mx2onnx/_op_translations.py
Original file line number Diff line number Diff line change
Expand Up @@ -191,7 +191,7 @@ def convert_weights_and_inputs(node, **kwargs):
data_type=data_type,
dims=dims,
vals=np_arr.flatten().tolist(),
raw=False,
raw=False
)
)

Expand Down Expand Up @@ -478,36 +478,73 @@ def convert_pad(node, **kwargs):
"""Map MXNet's pad operator attributes to onnx's Pad operator
and return the created node.
"""
opset_version = kwargs["opset_version"]
name, input_nodes, attrs = get_inputs(node, kwargs)

mxnet_pad_width = convert_string_to_list(attrs.get("pad_width"))
onnx_pad_width = transform_padding(mxnet_pad_width)

pad_mode = attrs.get("mode")
pad_value = np.float32(attrs.get("constant_value", 0.0))

if pad_mode == "constant":
pad_value = float(attrs.get("constant_value")) \
if "constant_value" in attrs else 0.0
node = onnx.helper.make_node(
'Pad',
inputs=input_nodes,
outputs=[name],
mode='constant',
value=pad_value,
pads=onnx_pad_width,
name=name
)
if opset_version >= 11:
# starting with opset 11, pads and constant_value are inputs instead of attributes
from onnx.helper import make_tensor, make_tensor_value_info
initializer = kwargs["initializer"]
pads_input_name = name + "_pads"
pads_input_type = onnx.TensorProto.INT64
pads_input_shape = np.shape(np.array(onnx_pad_width))
pads_value_node = make_tensor_value_info(pads_input_name, pads_input_type, pads_input_shape)
pads_tensor_node = make_tensor(pads_input_name, pads_input_type, pads_input_shape, onnx_pad_width)
initializer.append(pads_tensor_node)
input_nodes.append(pads_input_name)

if pad_mode == "constant":
const_input_name = name + "_constant"
const_input_type = onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[pad_value.dtype]
const_value_node = make_tensor_value_info(const_input_name, const_input_type, ())
const_tensor_node = make_tensor(const_input_name, const_input_type, (), [pad_value])
initializer.append(const_tensor_node)
input_nodes.append(const_input_name)
pad_node = onnx.helper.make_node(
"Pad",
input_nodes,
[name],
mode=pad_mode,
name=name
)
return [pads_value_node, const_value_node, pad_node]
else:
pad_node = onnx.helper.make_node(
"Pad",
input_nodes,
[name],
mode=pad_mode,
name=name
)
return [pads_value_node, pad_node]
else:
node = onnx.helper.make_node(
'Pad',
inputs=input_nodes,
outputs=[name],
mode=pad_mode,
pads=onnx_pad_width,
name=name
)

return [node]
if pad_mode == "constant":
node = onnx.helper.make_node(
'Pad',
inputs=input_nodes,
outputs=[name],
mode='constant',
value=pad_value,
pads=onnx_pad_width,
name=name
)
return [node]
else:
node = onnx.helper.make_node(
'Pad',
inputs=input_nodes,
outputs=[name],
mode=pad_mode,
pads=onnx_pad_width,
name=name
)
return [node]

def create_helper_tensor_node(input_vals, output_name, kwargs):
"""create extra tensor node from numpy values"""
Expand Down Expand Up @@ -766,6 +803,7 @@ def convert_pooling(node, **kwargs):
MaxPool/AveragePool/GlobalMaxPool/GlobalAveragePool operators
based on the input node's attributes and return the created node.
"""
opset_version = kwargs["opset_version"]
name, input_nodes, attrs = get_inputs(node, kwargs)

kernel = eval(attrs["kernel"])
Expand All @@ -777,12 +815,12 @@ def convert_pooling(node, **kwargs):
pooling_convention = attrs.get('pooling_convention', 'valid')
ceil_mode = False
if pooling_convention == 'full':
if onnx.__version__ < "1.5.0":
if opset_version < 10:
pooling_warning = "Pooling: ONNX lower than 1.5.0 doesn't support pooling_convention. " \
"This might lead to shape or accuracy issues. " \
"/~https://github.com/onnx/onnx/issues/549"
logging.warning(pooling_warning)
ceil_mode = True
logging.warning(pooling_warning)

pad_dims = list(parse_helper(attrs, "pad", [0, 0]))
pad_dims = pad_dims + pad_dims
Expand Down Expand Up @@ -822,7 +860,7 @@ def convert_pooling(node, **kwargs):
name=name
)
else:
if onnx.__version__ >= "1.5.0":
if opset_version >= 10:
node = onnx.helper.make_node(
pool_types[pool_type],
input_nodes, # input
Expand Down Expand Up @@ -1353,17 +1391,35 @@ def convert_dropout(node, **kwargs):
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
opset_version = kwargs["opset_version"]

probability = float(attrs.get("p", 0.5))

dropout_node = onnx.helper.make_node(
"Dropout",
input_nodes,
[name],
ratio=probability,
name=name
)
return [dropout_node]
if opset_version >= 12:
# opset >= 12 requires the ratio to be an input
initializer = kwargs["initializer"]
ratio_input_name = name + "_ratio"
value_node = onnx.helper.make_tensor_value_info(ratio_input_name,
onnx.TensorProto.FLOAT, ())
tensor_node = onnx.helper.make_tensor(ratio_input_name, onnx.TensorProto.FLOAT,
(), [probability])
initializer.append(tensor_node)
dropout_node = onnx.helper.make_node(
"Dropout",
[input_nodes[0], ratio_input_name],
[name],
name=name
)
return [value_node, dropout_node]
else:
dropout_node = onnx.helper.make_node(
"Dropout",
input_nodes,
[name],
ratio=probability,
name=name
)
return [dropout_node]


@mx_op.register("Flatten")
Expand All @@ -1379,19 +1435,46 @@ def convert_clip(node, **kwargs):
and return the created node.
"""
name, input_nodes, attrs = get_inputs(node, kwargs)
opset_version = kwargs["opset_version"]

a_min = np.float(attrs.get('a_min', -np.inf))
a_max = np.float(attrs.get('a_max', np.inf))
a_min = float(attrs.get('a_min', -np.inf))
a_max = float(attrs.get('a_max', np.inf))

clip_node = onnx.helper.make_node(
"Clip",
input_nodes,
[name],
name=name,
min=a_min,
max=a_max
)
return [clip_node]
if opset_version >= 11:
# opset >= 11 requires min/max to be inputs
initializer = kwargs["initializer"]
min_input_name = name + "_min"
max_input_name = name + "_max"
min_value_node = onnx.helper.make_tensor_value_info(min_input_name,
onnx.TensorProto.FLOAT, ())
max_value_node = onnx.helper.make_tensor_value_info(max_input_name,
onnx.TensorProto.FLOAT, ())
min_tensor_node = onnx.helper.make_tensor(min_input_name, onnx.TensorProto.FLOAT,
(), [a_min])
max_tensor_node = onnx.helper.make_tensor(max_input_name, onnx.TensorProto.FLOAT,
(), [a_max])
initializer.append(min_tensor_node)
initializer.append(max_tensor_node)
input_nodes.append(min_input_name)
input_nodes.append(max_input_name)
clip_node = onnx.helper.make_node(
"Clip",
input_nodes,
[name],
name=name
)
return [min_value_node, max_value_node, clip_node]

else:
clip_node = onnx.helper.make_node(
"Clip",
input_nodes,
[name],
name=name,
min=a_min,
max=a_max
)
return [clip_node]


def scalar_op_helper(node, op_name, **kwargs):
Expand Down Expand Up @@ -2496,22 +2579,34 @@ def convert_topk(node, **kwargs):
else:
raise NotImplementedError("ONNX expects both value and indices as output")

export_nodes = []

k = np.asarray([k], dtype=np.int)
k_node = create_helper_tensor_node(k, name + '__k', kwargs)
export_nodes.extend(k_node)
k_node = k_node[-1].name

input_node = input_nodes[0]
topk_node = onnx.helper.make_node(
"TopK",
[input_node, k_node],
outputs,
axis=axis,
name=name
)
export_nodes.extend([topk_node])
opset_version = kwargs['opset_version']
if opset_version >= 10:
from onnx.helper import make_tensor, make_tensor_value_info
initializer = kwargs["initializer"]
k_input_name = name + "_k"
k_input_type = onnx.TensorProto.INT64
k_value_node = make_tensor_value_info(k_input_name, k_input_type, ())
k_tensor_node = make_tensor(k_input_name, k_input_type, (), k)
initializer.append(k_tensor_node)
input_nodes.append(k_input_name)

topk_node = onnx.helper.make_node(
"TopK",
input_nodes,
outputs,
axis=axis,
name=name
)
return [k_value_node, topk_node]
else:
topk_node = onnx.helper.make_node(
"TopK",
input_nodes,
outputs,
axis=axis,
k=k,
name=name
)

return [topk_node]

Expand Down
10 changes: 7 additions & 3 deletions python/mxnet/contrib/onnx/mx2onnx/export_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,7 @@


def export_model(sym, params, input_shape, input_type=np.float32,
onnx_file_path='model.onnx', verbose=False):
onnx_file_path='model.onnx', verbose=False, opset_version=None):
"""Exports the MXNet model file, passed as a parameter, into ONNX model.
Accepts both symbol,parameter objects as well as json and params filepaths as input.
Operator support and coverage -
Expand Down Expand Up @@ -63,11 +63,15 @@ def export_model(sym, params, input_shape, input_type=np.float32,

try:
from onnx import helper, mapping
from onnx.defs import onnx_opset_version
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
+ "Instructions to install - /~https://github.com/onnx/onnx")

converter = MXNetGraph()
if opset_version is None:
# default is to use latest opset version the onnx package supports
opset_version = onnx_opset_version()

data_format = np.dtype(input_type)
# if input parameters are strings(file paths), load files and create symbol parameter objects
Expand All @@ -76,11 +80,11 @@ def export_model(sym, params, input_shape, input_type=np.float32,
sym_obj, params_obj = load_module(sym, params)
onnx_graph = converter.create_onnx_graph_proto(sym_obj, params_obj, input_shape,
mapping.NP_TYPE_TO_TENSOR_TYPE[data_format],
verbose=verbose)
verbose=verbose, opset_version=opset_version)
elif isinstance(sym, symbol.Symbol) and isinstance(params, dict):
onnx_graph = converter.create_onnx_graph_proto(sym, params, input_shape,
mapping.NP_TYPE_TO_TENSOR_TYPE[data_format],
verbose=verbose)
verbose=verbose, opset_version=opset_version)
else:
raise ValueError("Input sym and params should either be files or objects")

Expand Down
11 changes: 9 additions & 2 deletions python/mxnet/contrib/onnx/mx2onnx/export_onnx.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,7 +159,7 @@ def convert_weights_to_numpy(weights_dict):
return dict([(k.replace("arg:", "").replace("aux:", ""), v.asnumpy())
for k, v in weights_dict.items()])

def create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose=False):
def create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose=False, opset_version=None):
"""Convert MXNet graph to ONNX graph
Parameters
Expand All @@ -174,6 +174,8 @@ def create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose=False)
Input data type e.g. np.float32
verbose : Boolean
If true will print logs of the model conversion
opset_version : Int
ONNX opset version to use for export, defaults to latest supported by onnx package
Returns
-------
Expand All @@ -183,10 +185,14 @@ def create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose=False)
try:
from onnx import (checker, helper, NodeProto, ValueInfoProto, TensorProto)
from onnx.helper import make_tensor_value_info
from onnx.defs import onnx_opset_version
except ImportError:
raise ImportError("Onnx and protobuf need to be installed. "
+ "Instructions to install - /~https://github.com/onnx/onnx")

if opset_version is None:
opset_version = onnx_opset_version()

# When MXNet model is saved to json file , MXNet adds a node for label.
# The name of this node is, name of the last node + "_label" ( i.e if last node
# name is "Softmax", this node will have a name "Softmax_label". Also, the new node
Expand Down Expand Up @@ -251,7 +257,8 @@ def create_onnx_graph_proto(self, sym, params, in_shape, in_type, verbose=False)
graph_shapes=graph_shapes,
initializer=initializer,
index_lookup=index_lookup,
idx=idx
idx=idx,
opset_version=opset_version
)

if isinstance(converted, list):
Expand Down
Loading

0 comments on commit 5727510

Please sign in to comment.