A small library of native collections like NativeArray<T>
suitable to be used with Unity 2018.1 or greater. No additional packages (e.g. ECS or Burst) are required.
Clone or download this repository and copy the JacksonDunstanNativeCollections
directory somewhere inside your Unity project's Assets
directory.
Add this as a package to your project by adding the below as an entry to the dependencies in the /Package/manifest.json
file:
"com.jacksondunstan.native-collections": "/~https://github.com/jacksondunstan/NativeCollections.git"
For more information on adding git repositories as a package see the Git support on Package Manager in the Unity Documentation.
This is a doubly-linked list backed by parallel arrays. Here's how to use it:
// Create an empty list with capacity for five nodes
NativeLinkedList<int> list = new NativeLinkedList<int>(5, Allocator.Temp);
// Add some nodes to the list
list.InsertAfter(list.Tail, 10);
list.InsertAfter(list.Tail, 20);
list.InsertAfter(list.Tail, 30);
list.InsertAfter(list.Tail, 40);
list.InsertAfter(list.Tail, 50);
// Iterate over the list
foreach (int val in list)
{
Debug.Log(val);
}
// Remove a node from the middle
list.Remove(list.GetEnumeratorAtIndex(2));
// Insert a node into the middle
list.InsertBefore(list.Head.Next, 15);
// Sort the nodes so they can be accessed sequentially
list.SortNodeMemoryAddresses();
// Access the nodes sequentially
for (int i = 0; i < list.Length; ++i)
{
Debug.Log(list[i]);
}
// Dispose the list's native memory
list.Dispose();
There is much more functionality available. See the source for more.
To read about the making of this type, see this article series.
This is a dynamically-resizable list backed by arrays that store "chunks" of elements and an array of pointers to those chunks. Here's how to use it:
// Create an empty list with capacity for 4096 elements in 1024 element chunks
NativeChunkedList<int> list = new NativeChunkedList<int>(
1024,
4096,
Allocator.Temp);
// Add some elements to the list
list.Add(10);
list.Add(20);
list.Add(30);
list.Add(40);
list.Add(50);
// Iterate over the list
foreach (int val in list)
{
Debug.Log(val);
}
// Remove an element from the middle
list.RemoveAt(2);
// Insert an element into the middle
list.Insert(1, 15);
// Access the elements sequentially
foreach (var e in list.Chunks)
{
foreach (int val in e)
{
Debug.Log(val);
}
}
// Dispose the list's native memory
list.Dispose();
There is much more functionality available. See the source for more.
To read about the making of this type, see this article series.
This is a collection of unique keys that aren't mapped to values. Here's how to use it:
// Create an empty set
NativeHashSet<int> set = new NativeHashSet<int>(100, Allocator.Persistent);
// Add some keys
set.TryAdd(123);
set.TryAdd(456);
// Check for containment
set.Contains(123); // true
set.Contains(1000); // false
// Remove a key
set.Remove(123);
There is much more functionality available. See the source for more.
To read about the making of this type, see this article.
This is a 2D version of NativeArray<T>
. Here's how to use it:
// Create a 2x3 empty array
NativeArray2D<int> array = new NativeArray2D<int>(2, 3, Allocator.Temp);
// Set elements of the array
array[0, 1] = 123;
array[1, 2] = 456;
// Get elements of the array
int val123 = array[0, 1];
int val456 = array[1, 2];
// Iterate over the array
foreach (int val in array)
{
Debug.Log(val);
}
// Copy to a managed array
int[,] managed = new int[2, 3];
array.CopyTo(managed);
There is much more functionality available. See the source for more.
To read about the making of this type, see this article.
These are pointers to a single int
or long
, useful for counters among other purposes. Here's how to use NativeIntPtr
(NativeLongPtr
is identical):
// Construct with the zero value
NativeIntPtr intPtr0 = new NativeIntPtr(Allocator.Temp);
// Construct with a custom value
NativeIntPtr intPtr = new NativeIntPtr(Allocator.Temp, 123);
// Read and write the value
intPtr.Value = 20;
Debug.Log("Value: " + intPtr.Value); // prints "Value: 20"
// Get a Parallel for use in an IJobParallelFor
NativeIntPtr.Parallel parallel = intPtr.GetParallel();
// Perform atomic writes on it
parallel.Increment();
parallel.Decrement();
parallel.Add(100);
// Dispose the native memory
intPtr0.Dispose();
intPtr.Dispose();
To read about the making of this type, see this article.
These are pointers to a single int
or long
. Compared to NativeIntPtr
and NativeLongPtr
, their Parallel
versions are much faster to use in ParallelFor
jobs but use more memory. Here's how to use NativePerJobThreadIntPtr
(NativePerJobThreadLongPtr
is identical):
// Construct with the zero value
NativePerJobThreadIntPtr intPtr0 = new NativePerJobThreadIntPtr(Allocator.Temp);
// Construct with a custom value
NativePerJobThreadIntPtr intPtr = new NativePerJobThreadIntPtr(Allocator.Temp, 123);
// Read and write the value
intPtr.Value = 20;
Debug.Log("Value: " + intPtr.Value); // prints "Value: 20"
// Get a Parallel for use in an IJobParallelFor
NativePerJobThreadIntPtr.Parallel parallel = intPtr.GetParallel();
// Perform atomic writes on it
parallel.Increment();
parallel.Decrement();
parallel.Add(100);
// Dispose the native memory
intPtr0.Dispose();
intPtr.Dispose();
To read about the making of this type, see this article.
This is a job type interface similar to IJobParallelFor
for job types that want to operate on a range of indices from the batch rather than one index at a time. This is especially useful with NativeChunkedList<T>
as its enumerable and enumerator types can iterate much more efficiently than with random access via the indexer. Here's how to use this job type interface:
[BurstCompile]
struct ChunkedListIterateJobParallelFor : IJobParallelForRanged
{
public NativeChunkedList<int> List;
public NativePerJobThreadIntPtr.Parallel Sum;
public void Execute(int startIndex, int endIndex)
{
for (
var chunks = List.GetChunksEnumerable(startIndex, endIndex).GetEnumerator();
chunks.MoveNext();)
{
for (
var chunk = chunks.Current.GetEnumerator();
chunk.MoveNext();)
{
Sum.Add(chunk.Current);
}
}
}
}
To read about the making of this type, see this article.
This allows for easy sharing of IDisposable
objects such as the above collection types. A reference count is held internally and the object is free when its last reference is released. Here's how to use it:
// Create an IDisposable
NativeArray<int> array = new NativeArray<int>(1, Allocator.Temp);
// Prepare for sharing. Ref count = 1.
SharedDisposable<NativeArray<int>> shared = array.Share(Allocator.Temp);
// Share. Ref count = 2.
SharedDisposable<NativeArray<int>> shared2 = shared.Ref();
// Use a shared reference
print("Array len: " + shared2.Value.Length);
// Release a reference. Ref count = 1.
shared2.Dispose();
// Release the last reference. Ref count = 0.
// The NativeArray<int> is disposed.
shared.Dispose();
// 'using' blocks are even more convenient
// No need to call Dispose()
// Exception-safe
using (SharedDisposable<NativeArray<int>> used = array.Share(Allocator.Temp))
{
using (SharedDisposable<NativeArray<int>> used2 = shared.Ref())
{
}
}
To read about the making of this type, see this article.