git clone /~https://github.com/hy-vision-learning/jck-vision-int.git
cd ./jck-vision-init
All required packages can be installed via requirements.txt.
pip install -r requirements.txt
Note
If an error related to package versions occurs during installation, remove the version information and try again.
Open the change_randomseed.py file and change the random seed.
We are ensembling WideResNet, PyramidNet, and DenseNet. Therefore, a total of four runs are required.
Please train the models by running ensemble-pyramidnet.ipynb, ensemble-densenet.ipynb, and ensemble-wideresnet.ipynb one at a time. Once all the training is complete, run ensemble-final.ipynb to output the final results.
Note
- Please run only one .ipynb file at a time.
- If you stop a running .ipynb file and need to retrain, restart the kernel before running it again.
The training time for each model will be displayed immediately after the training is completed.
The final training results will be output in the final file.
seed | time | score |
---|---|---|
4943872 | 48h 43m | 272.049 |
It is expected to take around 22 to 24 hours in practice.
argument 출력
python3 main.py --help
출력
-h, --help show this help message and exit
-t TEST, --test TEST 테스트모드
-pm MODEL_PATH, --model_path MODEL_PATH
모델 폴더 이름
--amp AMP amp 옵션
-rs RANDOM_SEED, --random_seed RANDOM_SEED
학습 랜덤 시드. -1은 랜덤 시드를 고정하지 않음.
-lf LOG_FILE, --log_file LOG_FILE
로그 파일 출력 여부. 0=false, 1=true
-po PORT, --port PORT
-m {custom,resnet18,resnet34,resnet50,resnet101,resnet152,resnext50,wide_resnet_16_4,wide_resnet_28_10_03,densenet121,densenet169,densenet201,densenet161,pyramidnet100_84,pyramidnet200_240,pyramidnet236_220,pyramidnet272_200,pyramidnet_custom}, --model {custom,resnet18,resnet34,resnet50,resnet101,resnet152,resnext50,wide_resnet_16_4,wide_resnet_28_10_03,densenet121,densenet169,densenet201,densenet161,pyramidnet100_84,pyramidnet200_240,pyramidnet236_220,pyramidnet272_200,pyramidnet_custom}
학습 모델
-p PARALLEL, --parallel PARALLEL
멀티 gpu 사용 여부. 0=false, 1=true
-op {sgd,adam,sam}, --optimizer {sgd,adam,sam}
옵티마이저
-ls {none,lambda_lr,step_lr,cos_annealing,custom_annealing,one_cycle,cycle,on_plateau}, --lr_scheduler {none,lambda_lr,step_lr,cos_annealing,custom_annealing,one_cycle,cycle,on_plateau}
lr 스케쥴러
-ds SPLIT_RATIO, --split_ratio SPLIT_RATIO
train/validation 분할 비율
-am AUGMENTATION_MODE, --augmentation_mode AUGMENTATION_MODE
data augmentation mode
-asp AUGMENT_SPLIT, --augment_split AUGMENT_SPLIT
augmentation 분할 비율
-w NUM_WORKER, --num_worker NUM_WORKER
train/validation 분할 비율
-b BATCH_SIZE, --batch_size BATCH_SIZE
학습 배치사이즈
-mc MIX_STEP, --mix_step MIX_STEP
mix 적용시 몇 step마다 적용할지. 0은 모든 step에 적용.
-mt {none,mixup,cutmix}, --mix_method {none,mixup,cutmix}
mix 방법
-pd P_DEPTH, --p_depth P_DEPTH
pyramnidnet depth
-pa P_ALPHA, --p_alpha P_ALPHA
pyramnidnet alpha
-ps P_SHAKE, --p_shake P_SHAKE
pyramnidnet shake
-e EPOCH, --epoch EPOCH
epoch
-mlr MAX_LEARNING_RATE, --max_learning_rate MAX_LEARNING_RATE
optimizer/scheduler max learning rate 설정 (custom cos scheduler는 반대)
-milr MIN_LEARNING_RATE, --min_learning_rate MIN_LEARNING_RATE
optimizer/scheduler min learning rate 설정 (custom cos scheduler는 반대)
-wd WEIGHT_DECAY, --weight_decay WEIGHT_DECAY
optimizer weight decay 설정
-gc GRADIENT_CLIP, --gradient_clip GRADIENT_CLIP
gradient clip 설정. -1은 비활성화
-lsm LABEL_SMOOTHING, --label_smoothing LABEL_SMOOTHING
label smoothing 설정
-es EARLY_STOPPING, --early_stopping EARLY_STOPPING
ealry stoppin epoch 지정. -1은 비활성화
-ad ADAPTIVE, --adaptive ADAPTIVE
adaptive SAM 사용 여부
-snt NESTEROV, --nesterov NESTEROV
nesterov sgd 사용 여부
--rho RHO SAM rho 파라미터
-cm COS_MAX, --cos_max COS_MAX
cos annealing 주기
-cp CUT_P, --cut_p CUT_P
cutmix 적용 확률
-sm STEP_MILESTONE [STEP_MILESTONE ...], --step_milestone STEP_MILESTONE [STEP_MILESTONE ...]
step lr scheduler milestone