Skip to content

Commit

Permalink
Add an inference script providing both accuracy and benchmark result …
Browse files Browse the repository at this point in the history
…for original wide_n_deep example (apache#13895)

* Add a inference script can provide both accuracy and benchmark result

* minor changes

* minor fix to use keep similar coding style as other examples

* fix typo

* remove code redundance and other minor changes

* Addressing review comments and minor pylint fix

* remove parameter 'accuracy' to make logic simple
  • Loading branch information
juliusshufan authored and haohuw committed Jun 23, 2019
1 parent 07004a9 commit e82d7c1
Show file tree
Hide file tree
Showing 4 changed files with 142 additions and 17 deletions.
5 changes: 4 additions & 1 deletion example/sparse/wide_deep/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,5 +20,8 @@
The example demonstrates how to train [wide and deep model](https://arxiv.org/abs/1606.07792). The [Census Income Data Set](https://archive.ics.uci.edu/ml/datasets/Census+Income) that this example uses for training is hosted by the [UC Irvine Machine Learning Repository](https://archive.ics.uci.edu/ml/datasets/). Tricks of feature engineering are adapted from tensorflow's [wide and deep tutorial](/~https://github.com/tensorflow/models/tree/master/official/wide_deep).

The final accuracy should be around 85%.

For training:
- `python train.py`

For inference:
- `python inference.py`
28 changes: 28 additions & 0 deletions example/sparse/wide_deep/config.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

# Related to feature engineering, please see preprocess in data.py
ADULT = {
'train': 'adult.data',
'test': 'adult.test',
'url': 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/',
'num_linear_features': 3000,
'num_embed_features': 2,
'num_cont_features': 38,
'embed_input_dims': [1000, 1000],
'hidden_units': [8, 50, 100],
}
106 changes: 106 additions & 0 deletions example/sparse/wide_deep/inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,106 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import mxnet as mx
from mxnet.test_utils import *
from config import *
from data import get_uci_adult
from model import wide_deep_model
import argparse
import os
import time

parser = argparse.ArgumentParser(description="Run sparse wide and deep inference",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--num-infer-batch', type=int, default=100,
help='number of batches to inference')
parser.add_argument('--load-epoch', type=int, default=0,
help='loading the params of the corresponding training epoch.')
parser.add_argument('--batch-size', type=int, default=100,
help='number of examples per batch')
parser.add_argument('--benchmark', action='store_true', default=False,
help='run the script for benchmark mode, not set for accuracy test.')
parser.add_argument('--verbose', action='store_true', default=False,
help='accurcy for each batch will be logged if set')
parser.add_argument('--gpu', action='store_true', default=False,
help='Inference on GPU with CUDA')
parser.add_argument('--model-prefix', type=str, default='checkpoint',
help='the model prefix')

if __name__ == '__main__':
import logging
head = '%(asctime)-15s %(message)s'
logging.basicConfig(level=logging.INFO, format=head)

# arg parser
args = parser.parse_args()
logging.info(args)
num_iters = args.num_infer_batch
batch_size = args.batch_size
benchmark = args.benchmark
verbose = args.verbose
model_prefix = args.model_prefix
load_epoch = args.load_epoch
ctx = mx.gpu(0) if args.gpu else mx.cpu()
# dataset
data_dir = os.path.join(os.getcwd(), 'data')
val_data = os.path.join(data_dir, ADULT['test'])
val_csr, val_dns, val_label = get_uci_adult(data_dir, ADULT['test'], ADULT['url'])
# load parameters and symbol
sym, arg_params, aux_params = mx.model.load_checkpoint(model_prefix, load_epoch)
# data iterator
eval_data = mx.io.NDArrayIter({'csr_data': val_csr, 'dns_data': val_dns},
{'softmax_label': val_label}, batch_size,
shuffle=True, last_batch_handle='discard')
# module
mod = mx.mod.Module(symbol=sym, context=ctx, data_names=['csr_data', 'dns_data'],
label_names=['softmax_label'])
mod.bind(data_shapes=eval_data.provide_data, label_shapes=eval_data.provide_label)
# get the sparse weight parameter
mod.set_params(arg_params=arg_params, aux_params=aux_params)

data_iter = iter(eval_data)
nbatch = 0
if benchmark:
logging.info('Inference benchmark started ...')
tic = time.time()
for i in range(num_iters):
try:
batch = data_iter.next()
except StopIteration:
data_iter.reset()
else:
mod.forward(batch, is_train=False)
for output in mod.get_outputs():
output.wait_to_read()
nbatch += 1
score = (nbatch*batch_size)/(time.time() - tic)
logging.info('batch size %d, process %s samples/s' % (batch_size, score))
else:
logging.info('Inference started ...')
# use accuracy as the metric
metric = mx.metric.create(['acc'])
accuracy_avg = 0.0
for batch in data_iter:
nbatch += 1
metric.reset()
mod.forward(batch, is_train=False)
mod.update_metric(metric, batch.label)
accuracy_avg += metric.get()[1][0]
if args.verbose:
logging.info('batch %d, accuracy = %s' % (nbatch, metric.get()))
logging.info('averged accuracy on eval set is %.5f' % (accuracy_avg/nbatch))
20 changes: 4 additions & 16 deletions example/sparse/wide_deep/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

import mxnet as mx
from mxnet.test_utils import *
from config import *
from data import get_uci_adult
from model import wide_deep_model
import argparse
Expand All @@ -31,7 +32,7 @@
help='number of examples per batch')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate')
parser.add_argument('--cuda', action='store_true', default=False,
parser.add_argument('--gpu', action='store_true', default=False,
help='Train on GPU with CUDA')
parser.add_argument('--optimizer', type=str, default='adam',
help='what optimizer to use',
Expand All @@ -40,19 +41,6 @@
help='number of batches to wait before logging training status')


# Related to feature engineering, please see preprocess in data.py
ADULT = {
'train': 'adult.data',
'test': 'adult.test',
'url': 'https://archive.ics.uci.edu/ml/machine-learning-databases/adult/',
'num_linear_features': 3000,
'num_embed_features': 2,
'num_cont_features': 38,
'embed_input_dims': [1000, 1000],
'hidden_units': [8, 50, 100],
}


if __name__ == '__main__':
import logging
head = '%(asctime)-15s %(message)s'
Expand All @@ -66,7 +54,7 @@
optimizer = args.optimizer
log_interval = args.log_interval
lr = args.lr
ctx = mx.gpu(0) if args.cuda else mx.cpu()
ctx = mx.gpu(0) if args.gpu else mx.cpu()

# dataset
data_dir = os.path.join(os.getcwd(), 'data')
Expand All @@ -88,7 +76,7 @@
shuffle=True, last_batch_handle='discard')

# module
mod = mx.mod.Module(symbol=model, context=ctx ,data_names=['csr_data', 'dns_data'],
mod = mx.mod.Module(symbol=model, context=ctx, data_names=['csr_data', 'dns_data'],
label_names=['softmax_label'])
mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label)
mod.init_params()
Expand Down

0 comments on commit e82d7c1

Please sign in to comment.