Skip to content

Commit

Permalink
Merge branch 'master' of /~https://github.com/gridap/Gridap.jl into non…
Browse files Browse the repository at this point in the history
…linear_RK
  • Loading branch information
oriolcg committed Nov 15, 2023
2 parents b3194ac + 0c64e80 commit f3a33a2
Show file tree
Hide file tree
Showing 17 changed files with 432 additions and 21 deletions.
5 changes: 5 additions & 0 deletions NEWS.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,11 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

## Unreleased

### Added

- Implemented real/imag for VectorValues
- Explicit Runge-Kutta ODE Solvers. Since PR [#952](/~https://github.com/gridap/Gridap.jl/pull/952)

### Fixed

- `BlockMultiFieldStyle` available for `TransientMultiFieldFESpaces` since PR [#946](/~https://github.com/gridap/Gridap.jl/pull/946).
Expand Down
57 changes: 57 additions & 0 deletions docs/ODEs.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
Let us consider the transient problem $A(u,\dot{u}) = 0$. We can consider that this is a ODE, since the spatial part is not important here. The most standard situation is the one in which
$$
A(u,d_t{u}) = Md_t{u} + K u,
$$
i.e., $A$ is linear with respect to $\dot{u}$, but we can consider the more general case here.

# $θ$-method

Our motivation here is to split the time domain into time steps, and for each time step $[t^n,t^{n+1}]$, create an approximation of the map $u^n \mapsto u^{n+1}$ such that $A(R(u^{n+1},u^n),\Delta_t(u^{n+1},u^n)) = 0$. The operator $\Delta_t$ is an approximation of the time derivative and the operator $R$ is some time approximation of $u$ in $[t^n,t^{n+1}]$.

Let us consider the $θ$-method to fix ideas. In this case, we consider at each time step the initial value $u^n$, we approximate the time derivative using finite differences as $\Delta_t(u^n,u^{n+1}) = \frac{u^{n+1}-u^{n}}{\delta t}$. For Backward-Euler, we compute $R(u^n,u^{n+1}) = u^{n+1}$, for Forward Euler $R(u^n,u^{n+1}) = u^{n}$, and for Crank-Nicolson $R(u^n,u^{n+1}) = \frac{u^{n+1}+u^{n}}{2}$ (or more precisely, $R(u^n,u^{n+1}) = u^{n+1}(t-t^n) + u^n(t^{n+1}-t)$).

Now, we want to approximate the operator using any of these methods. We can readily check that we can write the Newton linearisation of any of these problems as:
$$
[\frac{∂A}{∂u}\frac{\partial R}{\partial u^{n+1}} + \frac{∂A}{∂\dot{u}}\frac{\partial \Delta}{\partial u^{n+1}} ] \delta u^{n+1} = - A(R(u^{n+1},u^n),\Delta_t(u^{n+1},u^n)).
$$
We can denote $J_0 \doteq \frac{∂A}{∂u}$ and $J_1 \doteq \frac{∂A}{∂\dot{u}}$.

E.g., for BE we have
$$
\frac{\partial R}{\partial u^{n+1}} = 1, \qquad \frac{\partial \Delta}{\partial u^{n+1}} = 1/δt,
$$
for FE we have
$$
\frac{\partial R}{\partial u^{n+1}} = 0, \qquad \frac{\partial \Delta}{\partial u^{n+1}} = 1/δt,
$$
and for CN we have
$$
\frac{\partial R}{\partial u^{n+1}} = 1/2, \qquad \frac{\partial \Delta}{\partial u^{n+1}} = 1/δt.
$$
Analogously, we can define $\gamma_0 \doteq \frac{\partial R}{\partial u^{n+1}}$ and $\gamma_1 \doteq \frac{\partial \Delta}{\partial u^{n+1}}$. Note that the standard Jacobian is pre-multiplied by $\gamma_0$. Thus, it makes no sense to compute $J_0$ when $\gamma_0 = 0$. The same happens for the case of $\gamma_1 = 0$ and $J_1$. But this is not the case for ODEs. $J_1$ is the mass matrix.

We have decided to write the problem in terms of $u^{n+1}$, but we could do something different. E.g., for the $\theta$-method, we can write the problem in terms of $u^{n+\theta}$ for $\theta > 0$. In this case, we have to define the $R$ and $Δ_t$ operators in terms of $u^{n+\theta}$ and $u^n$ and perform exactly as above. The only difference is a final update step.

From the discussion above, it seems quite clear that FE should work with the current machinery, since we would be computing $M + 0*L$. That is the reason why I say that the current machinery should work for FE but we need to avoid computing $L$ by using a if statement in the code, and only compute it for $\gamma_0 > 0$.

When FE works, we can start the discussion about the general RK solver.

# RK methods

In DIRK methods, we make the following assumption:
$$
A(t,u,d_t(u)) \doteq M d_t(u) + K(t,u) = 0.
$$
Given a Butcher tableau, the method reads as follows. Given $u^{n}$, compute for $s = 1,\ldots,n$,
$$
M k_s = -K(t_n + c_s \delta t, u^{n} + \delta t \sum_{i=1}^{s} a_{s,i} k_i),
$$
or
$$
M \delta k_s = - M k_s -K(t_n + c_s \delta t, u^{n} + \delta t \sum_{i=1}^{s} a_{s,i} k_i, k_s).
$$
Then, $u^{n+1} = u^n + \delta t \sum_{i=1}^{n} b_i k_i$. Note that we are only considering DIRK methods, since we only allow $i = 1, \ldots, s$ at each stage computation. In this case, the jacobians to be computed are as above, $J_0$ and $J_1$. However, $J_1 = M$ and $J_0 = \frac{\partial K}{\partial u}$. In any case, we could just define $A$ as above and compute its Jacobians as above.

At each stage, we have $\gamma_1^s = 1$ and $\gamma_0^s = \delta t a_{s,s}$. We can use exactly the same machinery as above with these coefficients.

In the case of explicit methods, $a_{s,s} = 0$ and we don't need to compute $J_0$, as above for FE.
2 changes: 2 additions & 0 deletions src/ODEs/Exports.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ end
@publish_gridapodes ODETools ThetaMethod
@publish_gridapodes ODETools RungeKutta
@publish_gridapodes ODETools IMEXRungeKutta
@publish_gridapodes ODETools EXRungeKutta
@publish_gridapodes ODETools Newmark
@publish_gridapodes ODETools GeneralizedAlpha
@publish_gridapodes ODETools ∂t
Expand All @@ -26,3 +27,4 @@ end
@publish_gridapodes TransientFETools TransientConstantMatrixFEOperator
@publish_gridapodes TransientFETools TransientRungeKuttaFEOperator
@publish_gridapodes TransientFETools TransientIMEXRungeKuttaFEOperator
@publish_gridapodes TransientFETools TransientEXRungeKuttaFEOperator
154 changes: 154 additions & 0 deletions src/ODEs/ODETools/EXRungeKutta.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,154 @@
"""
Explicit Runge-Kutta ODE solver
"""
struct EXRungeKutta <: ODESolver
ls::LinearSolver
dt::Float64
tableau::EXButcherTableau
function EXRungeKutta(ls::LinearSolver, dt, type::Symbol)
bt = EXButcherTableau(type)
new(ls, dt, bt)
end
end

"""
solve_step!(uf,odesol,op,u0,t0,cache)
"""
function solve_step!(uf::AbstractVector,
solver::EXRungeKutta,
op::ODEOperator,
u0::AbstractVector,
t0::Real,
cache)

# Unpack variables
dt = solver.dt
s = solver.tableau.s
a = solver.tableau.a
b = solver.tableau.b
c = solver.tableau.c
d = solver.tableau.d

# Create cache if not there
if cache === nothing
ode_cache = allocate_cache(op)
vi = similar(u0)
ki = [similar(u0) for i in 1:s]
M = allocate_jacobian(op,t0,uf,ode_cache)
get_mass_matrix!(M,op,t0,uf,ode_cache)
l_cache = nothing
else
ode_cache, vi, ki, M, l_cache = cache
end

lop = EXRungeKuttaStageOperator(op,t0,dt,u0,ode_cache,vi,ki,0,a,M)

for i in 1:s

# solve at stage i
ti = t0 + c[i]*dt
ode_cache = update_cache!(ode_cache,op,ti)
update!(lop,ti,ki[i],i)
l_cache = solve!(uf,solver.ls,lop,l_cache)

update!(lop,ti,uf,i)

end

# update final solution
tf = t0 + dt

@. uf = u0
for i in 1:s
@. uf = uf + dt*b[i]*lop.ki[i]
end

cache = (ode_cache, vi, ki, M, l_cache)

return (uf,tf,cache)


end




mutable struct EXRungeKuttaStageOperator <: RungeKuttaNonlinearOperator
odeop::ODEOperator
ti::Float64
dt::Float64
u0::AbstractVector
ode_cache
vi::AbstractVector
ki::AbstractVector
i::Int
a::Matrix
M::AbstractMatrix
end


"""
ODE: A(t,u,∂u = M ∂u/∂t + K(t,u) = 0 -> solve for u
EX-RK: A(t,u,ki) = M ki + K(ti,u0 + dt ∑_{j<i} a_ij * kj) = 0
= M ki + K(ti,ui) = 0 -> solve for ki
where ui = u0 + dt ∑_{j<i} a_ij * kj for i = 1,…,s
The Jacobian is always M. Compute and store M in EXRungeKuttaStageOperator
"""
function residual!(b::AbstractVector,
op::EXRungeKuttaStageOperator,
x::AbstractVector)

ui = x
vi = op.vi

lhs!(b,op.odeop,op.ti,(ui,vi),op.ode_cache)

@. ui = op.u0
for j = 1:op.i-1
@. ui = ui + op.dt * op.a[op.i,j] * op.ki[j]
end

rhs = similar(op.u0)
rhs!(rhs,op.odeop,op.ti,(ui,vi),op.ode_cache)

@. b = b + rhs
@. b = -1.0 * b
b
end

function jacobian!(A::AbstractMatrix,
op::EXRungeKuttaStageOperator,
x::AbstractVector)
@. A = op.M
end


function allocate_residual(op::EXRungeKuttaStageOperator,x::AbstractVector)
allocate_residual(op.odeop,op.ti,x,op.ode_cache)
end

function allocate_jacobian(op::EXRungeKuttaStageOperator,x::AbstractVector)
allocate_jacobian(op.odeop,op.ti,x,op.ode_cache)
end


function update!(op::EXRungeKuttaStageOperator,
ti::Float64,
ki::AbstractVector,
i::Int)
op.ti = ti
@. op.ki[i] = ki
op.i = i
end


function get_mass_matrix!(A::AbstractMatrix,
odeop::ODEOperator,
t0::Float64,
u0::AbstractVector,
ode_cache)
z = zero(eltype(A))
fillstored!(A,z)
jacobian!(A,odeop,t0,(u0,u0),2,1.0,ode_cache)
A
end
2 changes: 2 additions & 0 deletions src/ODEs/ODETools/ODESolvers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,8 @@ include("RungeKutta.jl")

include("IMEXRungeKutta.jl")

include("EXRungeKutta.jl")

include("Newmark.jl")

include("AffineNewmark.jl")
Expand Down
1 change: 1 addition & 0 deletions src/ODEs/ODETools/ODETools.jl
Original file line number Diff line number Diff line change
Expand Up @@ -72,6 +72,7 @@ export MidPoint
export ThetaMethod
export RungeKutta
export IMEXRungeKutta
export EXRungeKutta
export Newmark
export GeneralizedAlpha

Expand Down
66 changes: 66 additions & 0 deletions src/ODEs/ODETools/Tableaus.jl
Original file line number Diff line number Diff line change
Expand Up @@ -190,3 +190,69 @@ end
function IMEXButcherTableau(type::Symbol)
eval(:(IMEXButcherTableau($type())))
end

"""
Explicit Butcher tableaus
"""

abstract type EXButcherTableauType end

struct EX_FE_1_0_1 <: EXButcherTableauType end
struct EX_SSP_3_0_3 <: EXButcherTableauType end

"""
Explicit Butcher tableaus
"""
struct EXButcherTableau{T <: EXButcherTableauType}
s::Int # stages
p::Int # embedded order
q::Int # order
a::Matrix # A_ij explicit
b::Vector # b_j explicit
c::Vector # c_i explicit
d::Vector # d_j (embedded)
end

# EX Butcher Tableaus constructors

"""
EX Forward-Backward-Euler
number of stages: 1
embedded method: no
order: 1
"""
function EXButcherTableau(::EX_FE_1_0_1)
s = 1
p = 0
q = 1
a = reshape([0.0],1,1)
b = [1.0]
c = [0.0]
d = [0.0]
EXButcherTableau{EX_FE_1_0_1}(s,p,q,a,b,c,d)
end

"""
EX SSPRK3
number of stages: 3
embedded method: no
order: 3
"""
function EXButcherTableau(::EX_SSP_3_0_3)
s = 3
p = 0
q = 3
a = [0.0 0.0 0.0; 1.0 0.0 0.0; 1/4 1/4 0.0]
b = [1/6, 1/6, 2/3]
c = [0.0, 1.0, 1/2]
d = [0.0, 0.0, 0.0]


EXButcherTableau{EX_SSP_3_0_3}(s,p,q,a,b,c,d)
end

function EXButcherTableau(type::Symbol)
eval(:(EXButcherTableau($type())))
end
Loading

0 comments on commit f3a33a2

Please sign in to comment.