Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix CSR->ELL conversion #313

Merged
merged 2 commits into from
Jun 14, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 7 additions & 8 deletions benchmark/conversions/conversions.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,7 @@ const std::map<std::string, std::function<std::unique_ptr<gko::LinOp>(

// This function supposes that management of `FLAGS_overwrite` is done before
// calling it
void convert_matrix(const gko::LinOp *matrix_from, const gko::LinOp *matrix_to,
void convert_matrix(const gko::LinOp *matrix_from, gko::LinOp *matrix_to,
const char *conversion_name,
std::shared_ptr<gko::Executor> exec,
rapidjson::Value &test_case,
Expand All @@ -89,22 +89,22 @@ void convert_matrix(const gko::LinOp *matrix_from, const gko::LinOp *matrix_to,
rapidjson::Value(rapidjson::kObjectType), allocator);
// warm run
for (unsigned int i = 0; i < FLAGS_warmup; i++) {
auto to_clone = matrix_to->clone();
exec->synchronize();
to_clone->copy_from(matrix_from);
matrix_to->copy_from(matrix_from);
exec->synchronize();
matrix_to->clear();
}
std::chrono::nanoseconds time(0);
// timed run
for (unsigned int i = 0; i < FLAGS_repetitions; i++) {
auto to_clone = matrix_to->clone();
exec->synchronize();
auto tic = std::chrono::steady_clock::now();
to_clone->copy_from(matrix_from);
matrix_to->copy_from(matrix_from);
exec->synchronize();
auto toc = std::chrono::steady_clock::now();
time +=
std::chrono::duration_cast<std::chrono::nanoseconds>(toc - tic);
matrix_to->clear();
}
add_or_set_member(conversion_case[conversion_name], "time",
static_cast<double>(time.count()) / FLAGS_repetitions,
Expand Down Expand Up @@ -136,7 +136,6 @@ int main(int argc, char *argv[])
print_general_information(extra_information);

auto exec = executor_factory.at(FLAGS_executor)();
auto engine = get_engine();
auto formats = split(FLAGS_formats, ',');

rapidjson::IStreamWrapper jcin(std::cin);
Expand Down Expand Up @@ -166,6 +165,8 @@ int main(int argc, char *argv[])
std::clog << "Matrix is of size (" << data.size[0] << ", "
<< data.size[1] << ")" << std::endl;
for (const auto &format_from : formats) {
auto matrix_from =
share(matrix_factory.at(format_from)(exec, data));
for (const auto &format : matrix_factory) {
const auto format_to = std::get<0>(format);
if (format_from == format_to) {
Expand All @@ -179,8 +180,6 @@ int main(int argc, char *argv[])
continue;
}

auto matrix_from =
share(matrix_factory.at(format_from)(exec, data));
auto matrix_to = share(std::get<1>(format)(exec, data));
convert_matrix(matrix_from.get(), matrix_to.get(),
conversion_name.c_str(), exec, test_case,
Expand Down
1 change: 1 addition & 0 deletions benchmark/run_all_benchmarks.sh
Original file line number Diff line number Diff line change
Expand Up @@ -199,6 +199,7 @@ for (( i=${LOOP_START}; i < ${LOOP_END}; ++i )); do
run_spmv_benchmarks "${RESULT_FILE}"

if [ "${BENCHMARK}" == "conversions" ]; then
echo -e "${PREFIX}Running Conversion for ${GROUP}/${NAME}" 1>&2
run_conversion_benchmarks "${RESULT_FILE}"
fi

Expand Down
12 changes: 5 additions & 7 deletions cuda/matrix/csr_kernels.cu
Original file line number Diff line number Diff line change
Expand Up @@ -1363,27 +1363,25 @@ void calculate_max_nnz_per_row(std::shared_ptr<const CudaExecutor> exec,
{
const auto num_rows = source->get_size()[0];

const auto grid_dim =
(ceildiv(num_rows, default_block_size) < default_block_size)
? ceildiv(num_rows, default_block_size)
: default_block_size;

auto nnz_per_row = Array<size_type>(exec, num_rows);
auto block_results = Array<size_type>(exec, default_block_size);
auto d_result = Array<size_type>(exec, 1);

const auto grid_dim = ceildiv(num_rows, default_block_size);
kernel::calculate_nnz_per_row<<<grid_dim, default_block_size>>>(
num_rows, as_cuda_type(source->get_const_row_ptrs()),
as_cuda_type(nnz_per_row.get_data()));

kernel::reduce_max_nnz<<<grid_dim, default_block_size,
const auto n = ceildiv(num_rows, default_block_size);
const auto reduce_dim = n <= default_block_size ? n : default_block_size;
kernel::reduce_max_nnz<<<reduce_dim, default_block_size,
default_block_size * sizeof(size_type)>>>(
num_rows, as_cuda_type(nnz_per_row.get_const_data()),
as_cuda_type(block_results.get_data()));

kernel::reduce_max_nnz<<<1, default_block_size,
default_block_size * sizeof(size_type)>>>(
grid_dim, as_cuda_type(block_results.get_const_data()),
reduce_dim, as_cuda_type(block_results.get_const_data()),
as_cuda_type(d_result.get_data()));

exec->get_master()->copy_from(exec.get(), 1, d_result.get_const_data(),
Expand Down