Implementation of Kinesis Source Provider in Spark Structured Streaming. SPARK-18165 describes the need for such implementation.
git clone git@github.com:qubole/kinesis-sql.git
cd kinesis-sql
mvn install -DskipTests
This will create target/spark-sql-kinesis_2.11-2.2.0.jar file which contains the connector code and its dependency jars.
Refer Amazon Docs for more options
$ aws kinesis create-stream --stream-name test --shard-count 2
$ aws kinesis put-record --stream-name test --partition-key 1 --data 'Kinesis'
$ aws kinesis put-record --stream-name test --partition-key 1 --data 'Connector'
$ aws kinesis put-record --stream-name test --partition-key 1 --data 'for'
$ aws kinesis put-record --stream-name test --partition-key 1 --data 'Apache'
$ aws kinesis put-record --stream-name test --partition-key 1 --data 'Spark'
Refering $SPARK_HOME to the Spark installation directory. This library has been developed and tested against SPARK 2.2.x.
$SPARK_HOME/bin/spark-shell --jars target/spark-sql-kinesis_2.11-2.2.0.jar
// Subscribe the "test" stream
scala> :paste
val kinesis = spark
.readStream
.format("kinesis")
.option("streamName", "spark-streaming-example")
.option("endpointUrl", "https://kinesis.us-east-1.amazonaws.com")
.option("awsAccessKeyId", [ACCESS_KEY])
.option("awsSecretKey", [SECRET_KEY])
.option("startingposition", "TRIM_HORIZON")
.load
scala> kinesis.printSchema
root
|-- data: binary (nullable = true)
|-- streamName: string (nullable = true)
|-- partitionKey: string (nullable = true)
|-- sequenceNumber: string (nullable = true)
|-- approximateArrivalTimestamp: timestamp (nullable = true)
// Cast data into string and group by data column
scala> :paste
kinesis
.selectExpr("CAST(data AS STRING)").as[(String)]
.groupBy("data").count()
.writeStream
.format("console")
.outputMode("complete")
.start()
.awaitTermination()
+------------+-----+
| data|count|
+------------+-----+
| for| 1|
| Apache| 1|
| Spark| 1|
| Kinesis| 1|
| Connector| 1|
+------------+-----+
// Cast data into string and group by data column
scala> :paste
kinesis
.selectExpr("CAST(rand() AS STRING) as partitionKey","CAST(data AS STRING)").as[(String,String)]
.groupBy("data").count()
.writeStream
.format("kinesis")
.outputMode("update")
.option("streamName", "spark-sink-example")
.option("endpointUrl", "https://kinesis.us-east-1.amazonaws.com")
.option("awsAccessKeyId", [ACCESS_KEY])
.option("awsSecretKey", [SECRET_KEY])
.start()
.awaitTermination()
Option-Name | Default-Value | Description |
---|---|---|
streamName | - | Name of the stream in Kinesis to read from |
endpointUrl | https://kinesis.us-east-1.amazonaws.com | end-point URL for Kinesis Stream |
awsAccessKeyId | - | AWS Credentials for Kinesis describe, read record operations |
awsSecretKey | - | AWS Credentials for Kinesis describe, read record |
startingPosition | LATEST | Starting Position in Kinesis to fetch data from. Possible values are "LATEST" & "TRIM_HORIZON" |
describeShardInterval | 1s (1 second) | Minimum Interval between two DescribeStream API calls to consider resharding |
kinesis.executor.maxFetchTimeInMs | 1000 | Maximum time spent in executor to fetch record from Kinesis per Shard |
kinesis.executor.maxFetchRecordsPerShard | 100000 | Maximum Number of records to fetch per shard |
kinesis.executor.maxRecordPerRead | 10000 | Maximum Number of records to fetch per getRecords API call |
kinesis.client.numRetries | 3 | Maximum Number of retries for Kinesis API requests |
kinesis.client.retryIntervalMs | 1000 | Cool-off period before retrying Kinesis API |
Option-Name | Default-Value | Description |
---|---|---|
streamName | - | Name of the stream in Kinesis to write to |
endpointUrl | https://kinesis.us-east-1.amazonaws.com | The aws endpoint of the kinesis Stream |
awsAccessKeyId | - | AWS Credentials for Kinesis describe, read record operations |
awsSecretKey | - | AWS Credentials for Kinesis describe, read record |
kinesis.executor.recordMaxBufferedTime | 1000 (millis) | Specify the maximum buffered time of a record |
kinesis.executor.maxConnections | 1 | Specify the maximum connections to Kinesis |
kinesis.executor.aggregationEnabled | true | Specify if records should be aggregated before sending them to Kinesis |
- Above library has been developed and tested against Spark 2.2.x. We need to migrate to DataSource V2 APIs released in Spark 2.3.0
This connector would not have been possible without reference implemetation of Kafka connector for Structured streaming, Kinesis Connector for Legacy Streaming and Kinesis Client Library. Structure of some part of the code is influenced by the excellent work done by various Apache Spark Contributors.