Skip to content

Commit

Permalink
Change examples in manual to not require number of generators.
Browse files Browse the repository at this point in the history
Otherwise manual tests fail due to changes in automorphism group generators.
  • Loading branch information
hulpke committed Oct 27, 2017
1 parent 7c302a5 commit e9b450a
Show file tree
Hide file tree
Showing 2 changed files with 6 additions and 12 deletions.
14 changes: 4 additions & 10 deletions lib/gprd.gd
Original file line number Diff line number Diff line change
Expand Up @@ -191,8 +191,7 @@ DeclareGlobalFunction("SubdirectDiagonalPerms");
## gap> au:=DerivedSubgroup(AutomorphismGroup(n));;
## gap> Size(au);
## 120
## gap> p:=SemidirectProduct(au,n);
## <permutation group with 5 generators>
## gap> p:=SemidirectProduct(au,n);;
## gap> Size(p);
## 3000
## gap> n:=Group((1,2),(3,4));;
Expand All @@ -206,16 +205,11 @@ DeclareGlobalFunction("SubdirectDiagonalPerms");
## <pc group with 3 generators>
## gap> n:=AbelianGroup(IsPcGroup,[2,2]);
## <pc group of size 4 with 2 generators>
## gap> au:=AutomorphismGroup(n);
## <group of size 6 with 2 generators>
## gap> apc:=IsomorphismPcGroup(au);
## CompositionMapping( Pcgs([ (2,3), (1,2,3) ]) ->
## [ f1, f2 ], <action isomorphism> )
## gap> au:=AutomorphismGroup(n);;
## gap> apc:=IsomorphismPcGroup(au);;
## gap> g:=Image(apc);
## Group([ f1, f2 ])
## gap> apci:=InverseGeneralMapping(apc);
## [ f1*f2^2, f1*f2 ] -> [ Pcgs([ f1, f2 ]) -> [ f1*f2, f2 ],
## Pcgs([ f1, f2 ]) -> [ f2, f1 ] ]
## gap> apci:=InverseGeneralMapping(apc);;
## gap> IsGroupHomomorphism(apci);
## true
## gap> p:=SemidirectProduct(g,apci,n);
Expand Down
4 changes: 2 additions & 2 deletions lib/grppcext.gd
Original file line number Diff line number Diff line change
Expand Up @@ -190,8 +190,8 @@ DeclareOperation( "Extensions", [ CanEasilyComputePcgs, IsObject ] );
## gap> M := GModuleByMats( mats, GF(2) );;
## gap> A := AutomorphismGroup( G );;
## gap> B := GL( 1, 2 );;
## gap> D := DirectProduct( A, B );
## <group of size 6 with 4 generators>
## gap> D := DirectProduct( A, B );; Size(D);
## 6
## gap> P := CompatiblePairs( G, M, D );
## <group of size 6 with 2 generators>
## gap> ExtensionRepresentatives( G, M, P );
Expand Down

0 comments on commit e9b450a

Please sign in to comment.