Skip to content

The autoencoder implementation for the OUTRIDER package

License

Notifications You must be signed in to change notification settings

gagneurlab/autoCorrection

Repository files navigation

Overview

package
  • Free software: MIT license

Activate virtual environment

Together with the autoCorrection package you will get

'tensorflow', 'keras', 'numpy', 'kopt', 'scipy', 'h5py', 'sklearn', 'pandas', 'statsmodels', 'pytest'

packages automatically installed, if not present.

If you don't wannt to install these packages globally, please use virtual environment.

If you have problems with virtualenv, installing using conda may help:

(Installation of conda: https://conda.io/docs/user-guide/install/index.html)

Make sure you are using python 3.

conda create -n mypyth3 python=3.6

source activate mypyth3

conda install virtualenv

activate new environment in active python 3 environment:

virtualenv env-with-autoCorrection

source env-with-autoCorrection/bin/activate

Check if you are still using python 3:

python --version

Package Installation

pip install autoCorrection

Deactivate virtual environment

deactivate

Usage

#in python:
python
import autoCorrection
import numpy as np
counts = np.random.negative_binomial(n = 20, p=0.2, size = (10,8))
sf = np.ones((10,8))
corrector = autoCorrection.correctors.AECorrector()
c = corrector.correct(counts = counts, size_factors = sf)

#in R:
library(reticulate)
autoCorrection <- import("autoCorrection")
corrected <- autoCorrection$correctors$AECorrector(model_name, model_directory)$correct(COUNTS, SIZE_FACTORS, only_predict=FALSE)

Documentation

https://i12g-gagneurweb.in.tum.de/public/docs/autocorrection/