Skip to content

flyingshan/AerialDetection

 
 

Repository files navigation

Benchmarks for Object Detection in Aerial Images

Introduction

This codebase is created to build benchmarks for object detection in aerial images. It is modified from mmdetection. The master branch works with PyTorch 1.1 or higher. If you would like to use PyTorch 0.4.1, please checkout to the pytorch-0.4.1 branch.

detected_results

Main Features

To adapt to object detection in aerial images, this repo has several unique and new features compared to the original mmdetection

  • Support Oriented Object Detection

    In aerial images, objects are usually annotated by oriented bounding box (OBB). To support oriented object detection, we implement OBB Head (OBBRoIHead and OBBDenseHead). Also, we provide functions to transfer mask predictions to OBBs.

  • Cython Bbox Overlaps

    Since one patch image with the size of 1024 × 1024 may contain over 1000 instances in DOTA, which make the bbox overlaps memroy consuming. To avoid out of GPU memory, we calculate the bbox overlaps in cython. The speed of cython version is close to the GPU version.

  • Rotation Augmentation

    Since there are many orientation variations in aerial images, we implement the online rotation augmentation.

  • Rotated RoI Warping

    Currently, we implement two types of rotated RoI Warping (Rotated RoI Align and Rotated Position Sensitive RoI Align).

License

This project is released under the Apache 2.0 license.

Benchmark and model zoo

Installation

Please refer to INSTALL.md for installation.

Get Started

Please see GETTING_STARTED.md for the basic usage of mmdetection.

Contributing

We appreciate all contributions to improve benchmarks for object detection in aerial images.

Citing

If you use DOTA dataset, codebase or models in your research, please consider cite .

@inproceedings{xia2018dota,
  title={DOTA: A large-scale dataset for object detection in aerial images},
  author={Xia, Gui-Song and Bai, Xiang and Ding, Jian and Zhu, Zhen and Belongie, Serge and Luo, Jiebo and Datcu, Mihai and Pelillo, Marcello and Zhang, Liangpei},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={3974--3983},
  year={2018}
}

@article{chen2019mmdetection,
  title={MMDetection: Open mmlab detection toolbox and benchmark},
  author={Chen, Kai and Wang, Jiaqi and Pang, Jiangmiao and Cao, Yuhang and Xiong, Yu and Li, Xiaoxiao and Sun, Shuyang and Feng, Wansen and Liu, Ziwei and Xu, Jiarui and others},
  journal={arXiv preprint arXiv:1906.07155},
  year={2019}
}

@InProceedings{Ding_2019_CVPR,
author = {Ding, Jian and Xue, Nan and Long, Yang and Xia, Gui-Song and Lu, Qikai},
title = {Learning RoI Transformer for Oriented Object Detection in Aerial Images},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}

Thanks to the Third Party Libs

Pytorch

mmdetection

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.7%
  • Cuda 7.0%
  • C++ 3.1%
  • Other 0.2%