Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix offline store (tz-naive & field_mapping issues) #1466

Merged
merged 2 commits into from
Apr 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 22 additions & 7 deletions sdk/python/feast/infra/offline_stores/bigquery.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import time
from dataclasses import asdict, dataclass
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union
from typing import List, Optional, Union

import pandas
import pyarrow
Expand Down Expand Up @@ -130,9 +130,9 @@ class FeatureViewQueryContext:
table_ref: str
event_timestamp_column: str
created_timestamp_column: str
field_mapping: Dict[str, str]
query: str
table_subquery: str
entity_selections: List[str]


def _upload_entity_df_into_bigquery(project, entity_df) -> str:
Expand Down Expand Up @@ -178,9 +178,17 @@ def get_feature_view_query_context(
query_context = []
for feature_view, features in feature_views_to_feature_map.items():
join_keys = []
entity_selections = []
reverse_field_mapping = {
v: k for k, v in feature_view.input.field_mapping.items()
}
for entity_name in feature_view.entities:
entity = registry.get_entity(entity_name, project)
join_keys.append(entity.join_key)
join_key_column = reverse_field_mapping.get(
entity.join_key, entity.join_key
)
entity_selections.append(f"{join_key_column} AS {entity.join_key}")

if isinstance(feature_view.ttl, timedelta):
ttl_seconds = int(feature_view.ttl.total_seconds())
Expand All @@ -189,18 +197,25 @@ def get_feature_view_query_context(

assert isinstance(feature_view.input, BigQuerySource)

event_timestamp_column = feature_view.input.event_timestamp_column
created_timestamp_column = feature_view.input.created_timestamp_column

context = FeatureViewQueryContext(
name=feature_view.name,
ttl=ttl_seconds,
entities=join_keys,
features=features,
table_ref=feature_view.input.table_ref,
event_timestamp_column=feature_view.input.event_timestamp_column,
created_timestamp_column=feature_view.input.created_timestamp_column,
event_timestamp_column=reverse_field_mapping.get(
event_timestamp_column, event_timestamp_column
),
created_timestamp_column=reverse_field_mapping.get(
created_timestamp_column, created_timestamp_column
),
# TODO: Make created column optional and not hardcoded
field_mapping=feature_view.input.field_mapping,
query=feature_view.input.query,
table_subquery=feature_view.input.get_table_query_string(),
entity_selections=entity_selections,
)
query_context.append(context)
return query_context
Expand Down Expand Up @@ -267,7 +282,7 @@ def build_point_in_time_query(
{{ featureview.event_timestamp_column }} as event_timestamp,
{{ featureview.event_timestamp_column }} as {{ featureview.name }}_feature_timestamp,
{{ featureview.created_timestamp_column }} as created_timestamp,
{{ featureview.entities | join(', ')}},
{{ featureview.entity_selections | join(', ')}},
false AS is_entity_table
FROM {{ featureview.table_subquery }} WHERE {{ featureview.event_timestamp_column }} <= '{{ max_timestamp }}'
{% if featureview.ttl == 0 %}{% else %}AND {{ featureview.event_timestamp_column }} >= Timestamp_sub(TIMESTAMP '{{ min_timestamp }}', interval {{ featureview.ttl }} second){% endif %}
Expand Down Expand Up @@ -308,7 +323,7 @@ def build_point_in_time_query(
SELECT
{{ featureview.event_timestamp_column }} as {{ featureview.name }}_feature_timestamp,
{{ featureview.created_timestamp_column }} as created_timestamp,
{{ featureview.entities | join(', ')}},
{{ featureview.entity_selections | join(', ')}},
{% for feature in featureview.features %}
{{ feature }} as {{ featureview.name }}__{{ feature }}{% if loop.last %}{% else %}, {% endif %}
{% endfor %}
Expand Down
30 changes: 27 additions & 3 deletions sdk/python/feast/infra/offline_stores/file.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from feast.infra.provider import (
ENTITY_DF_EVENT_TIMESTAMP_COL,
_get_requested_feature_views_to_features_dict,
_run_field_mapping,
)
from feast.registry import Registry
from feast.repo_config import RepoConfig
Expand Down Expand Up @@ -55,6 +56,10 @@ def get_historical_features(
# Create lazy function that is only called from the RetrievalJob object
def evaluate_historical_retrieval():

# Make sure all event timestamp fields are tz-aware. We default tz-naive fields to UTC
entity_df[ENTITY_DF_EVENT_TIMESTAMP_COL] = entity_df[
ENTITY_DF_EVENT_TIMESTAMP_COL
].apply(lambda x: x if x.tz is not None else x.replace(tzinfo=pytz.utc))
# Sort entity dataframe prior to join, and create a copy to prevent modifying the original
entity_df_with_features = entity_df.sort_values(
ENTITY_DF_EVENT_TIMESTAMP_COL
Expand All @@ -65,10 +70,29 @@ def evaluate_historical_retrieval():
event_timestamp_column = feature_view.input.event_timestamp_column
created_timestamp_column = feature_view.input.created_timestamp_column

# Read dataframe to join to entity dataframe
df_to_join = pd.read_parquet(feature_view.input.path).sort_values(
# Read offline parquet data in pyarrow format
table = pyarrow.parquet.read_table(feature_view.input.path)

# Rename columns by the field mapping dictionary if it exists
if feature_view.input.field_mapping is not None:
table = _run_field_mapping(table, feature_view.input.field_mapping)

# Convert pyarrow table to pandas dataframe
df_to_join = table.to_pandas()

# Make sure all timestamp fields are tz-aware. We default tz-naive fields to UTC
df_to_join[event_timestamp_column] = df_to_join[
event_timestamp_column
)
].apply(lambda x: x if x.tz is not None else x.replace(tzinfo=pytz.utc))
if created_timestamp_column:
df_to_join[created_timestamp_column] = df_to_join[
created_timestamp_column
].apply(
lambda x: x if x.tz is not None else x.replace(tzinfo=pytz.utc)
)

# Sort dataframe by the event timestamp column
df_to_join = df_to_join.sort_values(event_timestamp_column)

# Build a list of all the features we should select from this source
feature_names = []
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@ def create_dataset() -> pd.DataFrame:
def get_feature_view(data_source: Union[FileSource, BigQuerySource]) -> FeatureView:
return FeatureView(
name="test_bq_correctness",
entities=["driver_id"],
entities=["driver"],
features=[Feature("value", ValueType.FLOAT)],
ttl=timedelta(days=5),
input=data_source,
Expand Down Expand Up @@ -83,20 +83,20 @@ def prep_bq_fs_and_fv(
event_timestamp_column="ts",
created_timestamp_column="created_ts",
date_partition_column="",
field_mapping={"ts_1": "ts", "id": "driver_ident"},
field_mapping={"ts_1": "ts", "id": "driver_id"},
)

fv = get_feature_view(bigquery_source)
e = Entity(
name="driver_id",
name="driver",
description="id for driver",
join_key="driver_ident",
join_key="driver_id",
value_type=ValueType.INT32,
)
with tempfile.TemporaryDirectory() as repo_dir_name:
config = RepoConfig(
registry=str(Path(repo_dir_name) / "registry.db"),
project=f"test_bq_correctness_{uuid.uuid4()}",
project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
provider="gcp",
)
fs = FeatureStore(config=config)
Expand All @@ -121,7 +121,10 @@ def prep_local_fs_and_fv() -> Iterator[Tuple[FeatureStore, FeatureView]]:
)
fv = get_feature_view(file_source)
e = Entity(
name="driver_id", description="id for driver", value_type=ValueType.INT32
name="driver",
description="id for driver",
join_key="driver_id",
value_type=ValueType.INT32,
)
with tempfile.TemporaryDirectory() as repo_dir_name, tempfile.TemporaryDirectory() as data_dir_name:
config = RepoConfig(
Expand All @@ -138,7 +141,34 @@ def prep_local_fs_and_fv() -> Iterator[Tuple[FeatureStore, FeatureView]]:
yield fs, fv


def run_materialization_test(fs: FeatureStore, fv: FeatureView) -> None:
# Checks that both offline & online store values are as expected
def check_offline_and_online_features(
fs: FeatureStore,
fv: FeatureView,
driver_id: int,
event_timestamp: datetime,
expected_value: float,
) -> None:
# Check online store
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver": driver_id}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - expected_value) < 1e-6

# Check offline store
df = fs.get_historical_features(
entity_df=pd.DataFrame.from_dict(
{"driver_id": [driver_id], "event_timestamp": [event_timestamp]}
),
feature_refs=[f"{fv.name}:value"],
).to_df()

assert abs(df.to_dict()[f"{fv.name}__value"][0] - expected_value) < 1e-6


def run_offline_online_store_consistency_test(
fs: FeatureStore, fv: FeatureView
) -> None:
now = datetime.utcnow()
# Run materialize()
# use both tz-naive & tz-aware timestamps to test that they're both correctly handled
Expand All @@ -147,38 +177,33 @@ def run_materialization_test(fs: FeatureStore, fv: FeatureView) -> None:
fs.materialize(feature_views=[fv.name], start_date=start_date, end_date=end_date)

# check result of materialize()
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": 1}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - 0.3) < 1e-6
check_offline_and_online_features(
fs=fs, fv=fv, driver_id=1, event_timestamp=end_date, expected_value=0.3
)

# check prior value for materialize_incremental()
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": 3}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - 4) < 1e-6
check_offline_and_online_features(
fs=fs, fv=fv, driver_id=3, event_timestamp=end_date, expected_value=4
)

# run materialize_incremental()
fs.materialize_incremental(
feature_views=[fv.name], end_date=now - timedelta(seconds=0),
)
fs.materialize_incremental(feature_views=[fv.name], end_date=now)

# check result of materialize_incremental()
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": 3}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - 5) < 1e-6
check_offline_and_online_features(
fs=fs, fv=fv, driver_id=3, event_timestamp=now, expected_value=5
)


@pytest.mark.integration
@pytest.mark.parametrize(
"bq_source_type", ["query", "table"],
)
def test_bq_materialization(bq_source_type: str):
def test_bq_offline_online_store_consistency(bq_source_type: str):
with prep_bq_fs_and_fv(bq_source_type) as (fs, fv):
run_materialization_test(fs, fv)
run_offline_online_store_consistency_test(fs, fv)


def test_local_materialization():
def test_local_offline_online_store_consistency():
with prep_local_fs_and_fv() as (fs, fv):
run_materialization_test(fs, fv)
run_offline_online_store_consistency_test(fs, fv)