Skip to content

Commit

Permalink
Fix offline store (tz-naive & field_mapping issues)
Browse files Browse the repository at this point in the history
Signed-off-by: Tsotne Tabidze <tsotne@tecton.ai>
  • Loading branch information
Tsotne Tabidze committed Apr 14, 2021
1 parent 2140422 commit 913cfc7
Show file tree
Hide file tree
Showing 3 changed files with 87 additions and 28 deletions.
29 changes: 22 additions & 7 deletions sdk/python/feast/infra/offline_stores/bigquery.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
import time
from dataclasses import asdict, dataclass
from datetime import datetime, timedelta
from typing import Dict, List, Optional, Union
from typing import List, Optional, Union

import pandas
import pyarrow
Expand Down Expand Up @@ -130,9 +130,9 @@ class FeatureViewQueryContext:
table_ref: str
event_timestamp_column: str
created_timestamp_column: str
field_mapping: Dict[str, str]
query: str
table_subquery: str
entity_selections: List[str]


def _upload_entity_df_into_bigquery(project, entity_df) -> str:
Expand Down Expand Up @@ -178,9 +178,17 @@ def get_feature_view_query_context(
query_context = []
for feature_view, features in feature_views_to_feature_map.items():
join_keys = []
entity_selections = []
reverse_field_mapping = {
v: k for k, v in feature_view.input.field_mapping.items()
}
for entity_name in feature_view.entities:
entity = registry.get_entity(entity_name, project)
join_keys.append(entity.join_key)
join_key_column = reverse_field_mapping.get(
entity.join_key, entity.join_key
)
entity_selections.append(f"{join_key_column} AS {entity.join_key}")

if isinstance(feature_view.ttl, timedelta):
ttl_seconds = int(feature_view.ttl.total_seconds())
Expand All @@ -189,18 +197,25 @@ def get_feature_view_query_context(

assert isinstance(feature_view.input, BigQuerySource)

event_timestamp_column = feature_view.input.event_timestamp_column
created_timestamp_column = feature_view.input.created_timestamp_column

context = FeatureViewQueryContext(
name=feature_view.name,
ttl=ttl_seconds,
entities=join_keys,
features=features,
table_ref=feature_view.input.table_ref,
event_timestamp_column=feature_view.input.event_timestamp_column,
created_timestamp_column=feature_view.input.created_timestamp_column,
event_timestamp_column=reverse_field_mapping.get(
event_timestamp_column, event_timestamp_column
),
created_timestamp_column=reverse_field_mapping.get(
created_timestamp_column, created_timestamp_column
),
# TODO: Make created column optional and not hardcoded
field_mapping=feature_view.input.field_mapping,
query=feature_view.input.query,
table_subquery=feature_view.input.get_table_query_string(),
entity_selections=entity_selections,
)
query_context.append(context)
return query_context
Expand Down Expand Up @@ -267,7 +282,7 @@ def build_point_in_time_query(
{{ featureview.event_timestamp_column }} as event_timestamp,
{{ featureview.event_timestamp_column }} as {{ featureview.name }}_feature_timestamp,
{{ featureview.created_timestamp_column }} as created_timestamp,
{{ featureview.entities | join(', ')}},
{{ featureview.entity_selections | join(', ')}},
false AS is_entity_table
FROM {{ featureview.table_subquery }} WHERE {{ featureview.event_timestamp_column }} <= '{{ max_timestamp }}'
{% if featureview.ttl == 0 %}{% else %}AND {{ featureview.event_timestamp_column }} >= Timestamp_sub(TIMESTAMP '{{ min_timestamp }}', interval {{ featureview.ttl }} second){% endif %}
Expand Down Expand Up @@ -308,7 +323,7 @@ def build_point_in_time_query(
SELECT
{{ featureview.event_timestamp_column }} as {{ featureview.name }}_feature_timestamp,
{{ featureview.created_timestamp_column }} as created_timestamp,
{{ featureview.entities | join(', ')}},
{{ featureview.entity_selections | join(', ')}},
{% for feature in featureview.features %}
{{ feature }} as {{ featureview.name }}__{{ feature }}{% if loop.last %}{% else %}, {% endif %}
{% endfor %}
Expand Down
30 changes: 27 additions & 3 deletions sdk/python/feast/infra/offline_stores/file.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@
from feast.infra.provider import (
ENTITY_DF_EVENT_TIMESTAMP_COL,
_get_requested_feature_views_to_features_dict,
_run_field_mapping,
)
from feast.registry import Registry
from feast.repo_config import RepoConfig
Expand Down Expand Up @@ -55,6 +56,10 @@ def get_historical_features(
# Create lazy function that is only called from the RetrievalJob object
def evaluate_historical_retrieval():

# Make sure all event timestamp fields are tz-aware. We default tz-naive fields to UTC
entity_df[ENTITY_DF_EVENT_TIMESTAMP_COL] = entity_df[
ENTITY_DF_EVENT_TIMESTAMP_COL
].apply(lambda x: x if x.tz is not None else x.replace(tzinfo=pytz.utc))
# Sort entity dataframe prior to join, and create a copy to prevent modifying the original
entity_df_with_features = entity_df.sort_values(
ENTITY_DF_EVENT_TIMESTAMP_COL
Expand All @@ -65,10 +70,29 @@ def evaluate_historical_retrieval():
event_timestamp_column = feature_view.input.event_timestamp_column
created_timestamp_column = feature_view.input.created_timestamp_column

# Read dataframe to join to entity dataframe
df_to_join = pd.read_parquet(feature_view.input.path).sort_values(
# Read offline parquet data in pyarrow format
table = pyarrow.parquet.read_table(feature_view.input.path)

# Rename columns by the field mapping dictionary if it exists
if feature_view.input.field_mapping is not None:
table = _run_field_mapping(table, feature_view.input.field_mapping)

# Convert pyarrow table to pandas dataframe
df_to_join = table.to_pandas()

# Make sure all timestamp fields are tz-aware. We default tz-naive fields to UTC
df_to_join[event_timestamp_column] = df_to_join[
event_timestamp_column
)
].apply(lambda x: x if x.tz is not None else x.replace(tzinfo=pytz.utc))
if created_timestamp_column:
df_to_join[created_timestamp_column] = df_to_join[
created_timestamp_column
].apply(
lambda x: x if x.tz is not None else x.replace(tzinfo=pytz.utc)
)

# Sort dataframe by the event timestamp column
df_to_join = df_to_join.sort_values(event_timestamp_column)

# Build a list of all the features we should select from this source
feature_names = []
Expand Down
56 changes: 38 additions & 18 deletions sdk/python/tests/test_materialize.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,20 +83,20 @@ def prep_bq_fs_and_fv(
event_timestamp_column="ts",
created_timestamp_column="created_ts",
date_partition_column="",
field_mapping={"ts_1": "ts", "id": "driver_ident"},
field_mapping={"ts_1": "ts", "id": "driver_id"},
)

fv = get_feature_view(bigquery_source)
e = Entity(
name="driver_id",
description="id for driver",
join_key="driver_ident",
join_key="driver_id",
value_type=ValueType.INT32,
)
with tempfile.TemporaryDirectory() as repo_dir_name:
config = RepoConfig(
registry=str(Path(repo_dir_name) / "registry.db"),
project=f"test_bq_correctness_{uuid.uuid4()}",
project=f"test_bq_correctness_{str(uuid.uuid4()).replace('-', '')}",
provider="gcp",
)
fs = FeatureStore(config=config)
Expand Down Expand Up @@ -138,6 +138,31 @@ def prep_local_fs_and_fv() -> Iterator[Tuple[FeatureStore, FeatureView]]:
yield fs, fv


# Checks that both offline & online store values are as expected
def check_offline_and_online_features(
fs: FeatureStore,
fv: FeatureView,
driver_id: int,
event_timestamp: datetime,
expected_value: float,
) -> None:
# Check online store
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": driver_id}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - expected_value) < 1e-6

# Check offline store
df = fs.get_historical_features(
entity_df=pd.DataFrame.from_dict(
{"driver_id": [driver_id], "event_timestamp": [event_timestamp]}
),
feature_refs=[f"{fv.name}:value"],
).to_df()

assert abs(df.to_dict()[f"{fv.name}__value"][0] - expected_value) < 1e-6


def run_materialization_test(fs: FeatureStore, fv: FeatureView) -> None:
now = datetime.utcnow()
# Run materialize()
Expand All @@ -147,27 +172,22 @@ def run_materialization_test(fs: FeatureStore, fv: FeatureView) -> None:
fs.materialize(feature_views=[fv.name], start_date=start_date, end_date=end_date)

# check result of materialize()
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": 1}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - 0.3) < 1e-6
check_offline_and_online_features(
fs=fs, fv=fv, driver_id=1, event_timestamp=end_date, expected_value=0.3
)

# check prior value for materialize_incremental()
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": 3}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - 4) < 1e-6
check_offline_and_online_features(
fs=fs, fv=fv, driver_id=3, event_timestamp=end_date, expected_value=4
)

# run materialize_incremental()
fs.materialize_incremental(
feature_views=[fv.name], end_date=now - timedelta(seconds=0),
)
fs.materialize_incremental(feature_views=[fv.name], end_date=now)

# check result of materialize_incremental()
response_dict = fs.get_online_features(
[f"{fv.name}:value"], [{"driver_id": 3}]
).to_dict()
assert abs(response_dict[f"{fv.name}__value"][0] - 5) < 1e-6
check_offline_and_online_features(
fs=fs, fv=fv, driver_id=3, event_timestamp=now, expected_value=5
)


@pytest.mark.integration
Expand Down

0 comments on commit 913cfc7

Please sign in to comment.