forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
kvstore.row_sparse_pull for GPU and end-to-end benchmark: CPU vs. mul…
…ti-GPUs (#150) * Add gpu support for BroadcastRowSparse * Fix bugs * Add benchmark script * Increase output dim size * Update weight on CPU using single GPU for sparse tensors * More fix * Optimize sparse_retain for special case * Change row sparse pull locations * Avoid sparse retain on cpu if possible * Use acc for metric * Fix misc
- Loading branch information
1 parent
6b0cac1
commit eeff444
Showing
8 changed files
with
445 additions
and
33 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,226 @@ | ||
from mxnet.test_utils import * | ||
import time | ||
import argparse | ||
import os | ||
|
||
parser = argparse.ArgumentParser(description="Run sparse linear regression " \ | ||
"with distributed kvstore", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument('--profiler', type=int, default=0, | ||
help='whether to use profiler') | ||
parser.add_argument('--num-epoch', type=int, default=1, | ||
help='number of epochs to train') | ||
parser.add_argument('--batch-size', type=int, default=512, | ||
help='number of examples per batch') | ||
parser.add_argument('--num-batch', type=int, default=99999999, | ||
help='number of batches per epoch') | ||
parser.add_argument('--dummy-iter', type=int, default=0, | ||
help='whether to use dummy iterator to exclude io cost') | ||
parser.add_argument('--kvstore', type=str, default='local', | ||
help='what kvstore to use [local, dist_sync, etc]') | ||
parser.add_argument('--log-level', type=str, default='debug', | ||
help='logging level [debug, info, error]') | ||
parser.add_argument('--dataset', type=str, default='avazu', | ||
help='what test dataset to use') | ||
parser.add_argument('--num-gpu', type=int, default=0, | ||
help='number of gpus to use. 0 means using cpu(0);' | ||
'otherwise, use gpu(0),...,gpu(num_gpu-1)') | ||
parser.add_argument('--output-dim', type=int, default=4, | ||
help='number of columns of the forward output') | ||
|
||
|
||
def get_libsvm_data(data_dir, data_name, url, data_origin_name): | ||
if not os.path.isdir(data_dir): | ||
os.system("mkdir " + data_dir) | ||
os.chdir(data_dir) | ||
if (not os.path.exists(data_name)): | ||
import urllib | ||
zippath = os.path.join(data_dir, data_origin_name) | ||
urllib.urlretrieve(url, zippath) | ||
os.system("bzip2 -d %r" % data_origin_name) | ||
os.chdir("..") | ||
|
||
|
||
class DummyIter(mx.io.DataIter): | ||
"A dummy iterator that always return the same batch, used for speed testing" | ||
def __init__(self, real_iter): | ||
super(DummyIter, self).__init__() | ||
self.real_iter = real_iter | ||
self.provide_data = real_iter.provide_data | ||
self.provide_label = real_iter.provide_label | ||
self.batch_size = real_iter.batch_size | ||
|
||
for batch in real_iter: | ||
self.the_batch = batch | ||
break | ||
|
||
def __iter__(self): | ||
return self | ||
|
||
def next(self): | ||
return self.the_batch | ||
|
||
# testing dataset sources | ||
avazu = { | ||
'data_name': 'avazu-app.t', | ||
'data_origin_name': 'avazu-app.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", | ||
'feature_dim': 1000000, | ||
} | ||
|
||
kdda = { | ||
'data_name': 'kdda.t', | ||
'data_origin_name': 'kdda.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", | ||
'feature_dim': 20216830, | ||
} | ||
|
||
datasets = { 'kdda' : kdda, 'avazu' : avazu } | ||
|
||
|
||
def get_sym(feature_dim): | ||
x = mx.symbol.Variable("data", stype='csr') | ||
norm_init = mx.initializer.Normal(sigma=0.01) | ||
w = mx.symbol.Variable("w", shape=(feature_dim, args.output_dim), init=norm_init, stype='row_sparse') | ||
embed = mx.symbol.dot(x, w) | ||
y = mx.symbol.Variable("softmax_label") | ||
model = mx.symbol.SoftmaxOutput(data=embed, label=y, name="out") | ||
return model | ||
|
||
|
||
def row_sparse_pull(kv, key, data, slices, weight_array, priority): | ||
# if have kvstore, need to pull corresponding rows of | ||
# the weights to each context | ||
# column indices (NDArray type) of the csr data | ||
# used as the row_idx of the weight row-sparse matrix | ||
row_indices = data.indices | ||
if len(slices) == 1: | ||
kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_indices) | ||
else: # more than one slices, multi-GPU training. Need to retain weight rows according to data slices | ||
# TODO(junwu): | ||
# the following line blocks, may need to pre-compute | ||
# and cache it outside the for loop | ||
indptr = data.indptr.asnumpy() | ||
row_idx_array = [] | ||
for s in slices: | ||
row_idx_array.append(row_indices[indptr[s.start]:indptr[s.stop]]) | ||
kv.row_sparse_pull(key, weight_array, priority=priority, row_ids=row_idx_array) | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
# arg parser | ||
args = parser.parse_args() | ||
num_epoch = args.num_epoch | ||
num_batch = args.num_batch | ||
kvstore = args.kvstore | ||
profiler = args.profiler > 0 | ||
batch_size = args.batch_size if args.num_gpu == 0 else args.num_gpu * args.batch_size | ||
dummy_iter = args.dummy_iter | ||
dataset = args.dataset | ||
log_level = args.log_level | ||
contexts = mx.context.cpu(0) if args.num_gpu < 1\ | ||
else [mx.context.gpu(i) for i in range(args.num_gpu)] | ||
|
||
# create kvstore when there are gpus | ||
kv = mx.kvstore.create(kvstore) if args.num_gpu >= 1 else None | ||
rank = kv.rank if kv is not None else 0 | ||
num_worker = kv.num_workers if kv is not None else 1 | ||
|
||
# only print log for rank 0 worker | ||
import logging | ||
if rank != 0: | ||
log_level = logging.ERROR | ||
elif log_level == 'DEBUG': | ||
log_level = logging.DEBUG | ||
else: | ||
log_level = logging.INFO | ||
head = '%(asctime)-15s %(message)s' | ||
logging.basicConfig(level=log_level, format=head) | ||
|
||
# dataset | ||
assert(dataset in datasets), "unknown dataset " + dataset | ||
metadata = datasets[dataset] | ||
feature_dim = metadata['feature_dim'] | ||
if logging: | ||
logging.debug('preparing data ... ') | ||
data_dir = os.path.join(os.getcwd(), 'data') | ||
path = os.path.join(data_dir, metadata['data_name']) | ||
if not os.path.exists(path): | ||
get_libsvm_data(data_dir, metadata['data_name'], metadata['url'], | ||
metadata['data_origin_name']) | ||
assert os.path.exists(path) | ||
|
||
# data iterator | ||
train_data = mx.io.LibSVMIter(data_libsvm=path, data_shape=(feature_dim,), | ||
batch_size=batch_size, num_parts=num_worker, | ||
part_index=rank) | ||
if dummy_iter: | ||
train_data = DummyIter(train_data) | ||
|
||
# model | ||
model = get_sym(feature_dim) | ||
|
||
# module | ||
mod = mx.mod.Module(symbol=model, data_names=['data'], | ||
label_names=['softmax_label'], context=contexts) | ||
mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label) | ||
mod.init_params(initializer=mx.init.Uniform(scale=.1)) | ||
sgd = mx.optimizer.SGD(momentum=0.0, clip_gradient=5.0, | ||
learning_rate=0.1, rescale_grad=1.0/batch_size/num_worker) | ||
mod.init_optimizer(optimizer=sgd, kvstore=kv) | ||
# use accuracy as the metric | ||
metric = mx.metric.create('acc') | ||
|
||
index = mod._exec_group.param_names.index('w') | ||
# weight_array bound to executors of the contexts | ||
weight_array = mod._exec_group.param_arrays[index] | ||
|
||
# start profiler | ||
if profiler: | ||
device = 'cpu' | ||
if args.num_gpu > 0: | ||
device = 'gpu' + str(args.num_gpu) | ||
name = 'profile_' + args.dataset + '_' + device + '_nworker' + str(num_worker)\ | ||
+ '_batchsize' + str(args.batch_size) + '_outdim' + str(args.output_dim) + '.json' | ||
mx.profiler.profiler_set_config(mode='all', filename=name) | ||
mx.profiler.profiler_set_state('run') | ||
|
||
logging.debug('start training ...') | ||
start = time.time() | ||
data_iter = iter(train_data) | ||
for epoch in range(num_epoch): | ||
nbatch = 0 | ||
end_of_batch = False | ||
data_iter.reset() | ||
metric.reset() | ||
next_batch = next(data_iter) | ||
if kv is not None: | ||
row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) | ||
while not end_of_batch: | ||
nbatch += 1 | ||
batch = next_batch | ||
|
||
mod.forward_backward(batch) | ||
# update parameters | ||
mod.update() | ||
|
||
try: | ||
# pre fetch next batch | ||
next_batch = next(data_iter) | ||
if nbatch == num_batch: | ||
raise StopIteration | ||
if kv is not None: | ||
row_sparse_pull(kv, 'w', next_batch.data[0], mod._exec_group.slices, weight_array, -index) | ||
except StopIteration: | ||
end_of_batch = True | ||
# accumulate prediction accuracy | ||
mod.update_metric(metric, batch.label) | ||
logging.info('epoch %d, %s' % (epoch, metric.get())) | ||
if epoch == 0: | ||
print "num_batches = ", nbatch | ||
if profiler: | ||
mx.profiler.profiler_set_state('stop') | ||
end = time.time() | ||
time_cost = end - start | ||
logging.info('num_worker = ' + str(num_worker) + ', time cost = ' + str(time_cost)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.