forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
213 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,213 @@ | ||
from mxnet.test_utils import * | ||
import time | ||
import argparse | ||
import os | ||
|
||
parser = argparse.ArgumentParser(description="Run sparse linear regression " \ | ||
"with distributed kvstore", | ||
formatter_class=argparse.ArgumentDefaultsHelpFormatter) | ||
parser.add_argument('--profiler', type=int, default=0, | ||
help='whether to use profiler') | ||
parser.add_argument('--num-epoch', type=int, default=1, | ||
help='number of epochs to train') | ||
parser.add_argument('--batch-size', type=int, default=512, | ||
help='number of examples per batch') | ||
parser.add_argument('--num-batch', type=int, default=99999999, | ||
help='number of batches per epoch') | ||
parser.add_argument('--dummy-iter', type=int, default=0, | ||
help='whether to use dummy iterator to exclude io cost') | ||
parser.add_argument('--kvstore', type=str, default='local', | ||
help='what kvstore to use [local, dist_sync, etc]') | ||
parser.add_argument('--log-level', type=str, default='debug', | ||
help='logging level [debug, info, error]') | ||
parser.add_argument('--dataset', type=str, default='avazu', | ||
help='what test dataset to use') | ||
parser.add_argument('--num-gpu', type=int, default=0, | ||
help='number of gpus to use. 0 means using cpu(0);' | ||
'otherwise, use gpu(0),...,gpu(num_gpu-1)') | ||
parser.add_argument('--output-dim', type=int, default=1, | ||
help='number of columns of the forward output') | ||
|
||
|
||
def get_libsvm_data(data_dir, data_name, url, data_origin_name): | ||
if not os.path.isdir(data_dir): | ||
os.system("mkdir " + data_dir) | ||
os.chdir(data_dir) | ||
if (not os.path.exists(data_name)): | ||
import urllib | ||
zippath = os.path.join(data_dir, data_origin_name) | ||
urllib.urlretrieve(url, zippath) | ||
os.system("bzip2 -d %r" % data_origin_name) | ||
os.chdir("..") | ||
|
||
|
||
class DummyIter(mx.io.DataIter): | ||
"A dummy iterator that always return the same batch, used for speed testing" | ||
def __init__(self, real_iter): | ||
super(DummyIter, self).__init__() | ||
self.real_iter = real_iter | ||
self.provide_data = real_iter.provide_data | ||
self.provide_label = real_iter.provide_label | ||
self.batch_size = real_iter.batch_size | ||
|
||
for batch in real_iter: | ||
self.the_batch = batch | ||
break | ||
|
||
def __iter__(self): | ||
return self | ||
|
||
def next(self): | ||
return self.the_batch | ||
|
||
# testing dataset sources | ||
avazu = { | ||
'data_name': 'avazu-app.t', | ||
'data_origin_name': 'avazu-app.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/avazu-app.t.bz2", | ||
'feature_dim': 1000000, | ||
} | ||
|
||
kdda = { | ||
'data_name': 'kdda.t', | ||
'data_origin_name': 'kdda.t.bz2', | ||
'url': "https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/kdda.t.bz2", | ||
'feature_dim': 20216830, | ||
} | ||
|
||
datasets = { 'kdda' : kdda, 'avazu' : avazu } | ||
|
||
|
||
def get_sym(feature_dim): | ||
initializer = mx.initializer.Normal() | ||
x = mx.symbol.Variable("data", stype='csr') | ||
norm_init = mx.initializer.Normal(sigma=0.01) | ||
w = mx.symbol.Variable("w", shape=(feature_dim, args.output_dim), init=norm_init, stype='row_sparse') | ||
embed = mx.symbol.dot(x, w) | ||
y = mx.symbol.Variable("softmax_label") | ||
model = mx.symbol.SoftmaxOutput(data=embed, label=y, name="out") | ||
return model | ||
|
||
|
||
if __name__ == '__main__': | ||
|
||
# arg parser | ||
args = parser.parse_args() | ||
num_epoch = args.num_epoch | ||
num_batch = args.num_batch | ||
kvstore = args.kvstore | ||
profiler = args.profiler > 0 | ||
batch_size = args.batch_size | ||
dummy_iter = args.dummy_iter | ||
dataset = args.dataset | ||
log_level = args.log_level | ||
contexts = mx.context.cpu(0) if args.num_gpu < 1\ | ||
else [mx.context.gpu(i) for i in range(args.num_gpu)] | ||
|
||
# create kvstore when there are gpus | ||
kv = mx.kvstore.create(kvstore) if args.num_gpu >= 1 else None | ||
rank = kv.rank if kv is not None else 0 | ||
num_worker = kv.num_workers if kv is not None else 1 | ||
|
||
# only print log for rank 0 worker | ||
import logging | ||
if rank != 0: | ||
log_level = logging.ERROR | ||
elif log_level == 'DEBUG': | ||
log_level = logging.DEBUG | ||
else: | ||
log_level = logging.INFO | ||
head = '%(asctime)-15s %(message)s' | ||
logging.basicConfig(level=log_level, format=head) | ||
|
||
# dataset | ||
assert(dataset in datasets), "unknown dataset " + dataset | ||
metadata = datasets[dataset] | ||
feature_dim = metadata['feature_dim'] | ||
if logging: | ||
logging.debug('preparing data ... ') | ||
data_dir = os.path.join(os.getcwd(), 'data') | ||
path = os.path.join(data_dir, metadata['data_name']) | ||
if not os.path.exists(path): | ||
get_libsvm_data(data_dir, metadata['data_name'], metadata['url'], | ||
metadata['data_origin_name']) | ||
assert os.path.exists(path) | ||
|
||
# data iterator | ||
train_data = mx.io.LibSVMIter(data_libsvm=path, data_shape=(feature_dim,), | ||
batch_size=batch_size, num_parts=num_worker, | ||
part_index=rank) | ||
if dummy_iter: | ||
train_data = DummyIter(train_data) | ||
|
||
# model | ||
model = get_sym(feature_dim) | ||
|
||
# module | ||
mod = mx.mod.Module(symbol=model, data_names=['data'], | ||
label_names=['softmax_label'], context=contexts) | ||
mod.bind(data_shapes=train_data.provide_data, label_shapes=train_data.provide_label) | ||
mod.init_params(initializer=mx.init.Uniform(scale=.1)) | ||
sgd = mx.optimizer.SGD(momentum=0.0, clip_gradient=5.0, | ||
learning_rate=0.1, rescale_grad=1.0/batch_size/num_worker) | ||
mod.init_optimizer(optimizer=sgd, kvstore=kv) | ||
# use accuracy as the metric | ||
metric = mx.metric.create('MSE') | ||
|
||
index = mod._exec_group.param_names.index('w') | ||
# weight_array bound to executors of the contexts | ||
weight_array = mod._exec_group.param_arrays[index] | ||
|
||
# start profiler | ||
if profiler: | ||
import random | ||
name = 'profile_output_' + str(num_worker) + '.json' | ||
mx.profiler.profiler_set_config(mode='all', filename=name) | ||
mx.profiler.profiler_set_state('run') | ||
|
||
logging.debug('start training ...') | ||
start = time.time() | ||
data_iter = iter(train_data) | ||
for epoch in range(num_epoch): | ||
nbatch = 0 | ||
end_of_batch = False | ||
data_iter.reset() | ||
metric.reset() | ||
next_batch = next(data_iter) | ||
while not end_of_batch: | ||
nbatch += 1 | ||
batch = next_batch | ||
|
||
mod.forward_backward(batch) | ||
# update parameters | ||
mod.update() | ||
# if have kvstore, need to pull corresponding rows of | ||
# the weights to each context | ||
if kv is not None: | ||
# column indices (NDArray type) of the csr data | ||
# used as the row_idx of the weight row-sparse matrix | ||
# TODO(junwu): | ||
# the following two lines block, may need to precompute | ||
# them and cache them outside the for loop | ||
row_indices = batch.data[0].indices | ||
indptr = batch.data[0].indptr.asnumpy() | ||
row_idx_array = [] | ||
for s in mod._exec_group.slices: | ||
row_idx_array.append(row_indices[indptr[s.start]:indptr[s.stop]]) | ||
kv.row_sparse_pull('w', weight_array, priority=-index, row_ids=row_idx_array) | ||
|
||
try: | ||
# pre fetch next batch | ||
next_batch = next(data_iter) | ||
if nbatch == num_batch: | ||
raise StopIteration | ||
except StopIteration: | ||
end_of_batch = True | ||
# accumulate prediction accuracy | ||
mod.update_metric(metric, batch.label) | ||
logging.info('epoch %d, %s' % (epoch, metric.get())) | ||
if profiler: | ||
mx.profiler.profiler_set_state('stop') | ||
end = time.time() | ||
time_cost = end - start | ||
logging.info('num_worker = ' + str(num_worker) + ', time cost = ' + str(time_cost)) |